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ABSTRACT

We define and study in terms of integral Iwahori-Hecke algebras a new class of geometric
operators acting on the Bruhat-Tits building of connected reductive groups over p-adic
fields. These operators, which we call U-operators, generalize the geometric notion of
"successors" for trees with a marked end. The first main contributions of the thesis are:
(i) the integrality of the U-operator over the spherical Hecke algebra using the compati-
bility between Bernstein and Satake homomorphisms,
(i) in the unramified case, the U-operator attached to a cocharacter is a right root of
the corresponding Hecke polynomial.
In the second part of the thesis, we study some arithmetic aspects of special cycles on
(products of) unitary Shimura varieties, these cycles are expected to yield new results
towards the Bloch—Beilinson conjectures. As a global application of (ii), we obtain:
(iii) the horizontal norm relations for these GGP cycles for arbitrary n, at primes where
the unitary group splits.
The general local theory developed in the first part of the thesis, has the potential to
result in a number of global applications along the lines of (iii) (involving other Shimura
varieties and also vertical norm relations) and offers new insights into topics such as the

Blasius-Rogawski conjecture as well.
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CHAPTER I

INTRODUCTION

I.1 Introduction

I.1.1 Birch and Swinnerton—Dyer conjecture for elliptic curves

Elliptic curves and Galois representations have received a significant attention in the past
few decades for several reasons. First and foremost, Andrew Wiles’ proof of Fermat’s last

theorem was based on the modularity theorem for elliptic curves over @ [Wil95, BCDTO1].

In addition, the Birch and Swinnerton-Dyer conjecture (the BSD conjecture) for elliptic
curves still remains one of the most fundamental open problems in modern number theory
and arithmetic algebraic geometry. The conjecture predicts that the rank of the group
of rational points on an elliptic curve should be the same as the order of vanishing of its
L-function at s = 1. Morally, it formalizes the philosophy that the more points one has
on an elliptic curve over a number field, the more points one gets (on average) over the
residue fields at the different finite places. There is also a refined conjecture that expresses
the leading term of the Taylor expansion of the L-function in terms of local and global

invariants for the elliptic curve.

The strongest evidence towards this open problem is obtained for curves with analytical

rank at most one: the rank part of the BSD holds and the Tate—Shafarevitch group is
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finite. This is a consequence of’

(i) Kolyvagin’s Heegner points Euler system, the central ingredient for bounding the
size of the corresponding Selmer group [Kol90, Gro91].
(ii) The Gross-Zagier formula relating the derivative of the corresponding L-function at

the central point to the height of the Heegner point [GZ86].

The BSD conjecture generalizes in different directions to closely related mathematical

objects. For instance:

e There is a version for abelian varieties over number fields as well as for modular forms
of arbitrary weight. More generally, one can formulate a precise analogue for Galois
representations via Selmer groups; the latter are subgroups of the first Galois cohomology
group of the representation determined by specified local conditions.

e One has the Bloch-Kato—Beilinson conjectures [BK90|. These, may be seen as a
remarkable attempt to unify BSD with a few other conjectures that were wandering in
number theory’s paysage for a few decades, such as the main conjecture of Iwasawa theory.
More precisely, the Bloch-Kato—Beilinson conjectures are a sequence of statements that
generalize BSD to higher-dimensional objects”, and thus, relate it to the other major

fundamental research program in number theory - the Langlands program.

[.1.2 Anti-cyclotomic main conjecture of Perrin-Riou

A related problem in the theory of Galois representations is the study of various Selmer
groups over Z,-extensions of number fields (the Iwasawa theory of Galois representations).
Since Selmer groups behave nicely over such infinite extensions, in the basic case of elliptic
curves, one typically obtains strong Iwasawa-theoretic results unconditionally on the rank

of the elliptic curve [PR95, Kat04, How04, BDO05].

ltogether with some analytic results due to Murty-Murty and Bump-Friedberg-Hoffstein [BFH90,
MMO97].
2The BSD Conjecture in its original form is a statement about modular and Shimura curves.
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I.1.3 Euler systems

After the seminal work of Kolyvagin [Kol90], it was clear that "Euler systems"” would play
a central role to make progress on the open problems discussed above. More accurately,
they currently appear to be our most efficient tool to approach cases of Bloch-Kato type

conjectures”.

Unfortunately, these objects are rare in the mathematical literature, and the list of con-
structed ones was rather short [Kol90, Kat04]. But in recent years, there has been a surge of
new candidates proposed by various people (Cornut [Cor18], Jetchev [Jet16], Boumasmoud—
Brooks—Jetchev [BBJ18, BBJ16]|, Loeffler-Zerbes-Lei [LLZ14, LLZ17|, Loefler-Zerbes—
Kings [KLZ15, KLZ17| and, Loeffler—Zerbes—Skinner [LSZ17]). Judging by the success of
their predecessors, one expects that these new Euler Systems should soon yield significant

new developments in arithmetic geometry.

Euler systems are delicate rigid objects in the following sense: they ° are collections of
compatible Galois cohomology classes in H!(L,T) indexed by fields L, (F C L C F|[o0]),
for some fixed infinite abelian extension F[oo] of a number field F' where T is a p-adic
representation of Gal(F%°/F). These (Galois) cohomology classes are constrained by a set

of relations, of which there are three major types: the horizontal (or tame) relations, the

vertical relations® and the congruence relations.

Establishing these relations for the early Euler systems constructed out of Heegner points
or Siegel units is an ad-hoc exercise in CM theory and modular functions. Yet, the situation
changed dramatically for the new applicants to the point that most of the difficulty for
obtaining constructions in higher dimensions seems to be now concentrated in this new

bottleneck.

As of now, there is no general strategy for establishing the desired distribution relations for
a given collection of special cycles on a Shimura variety. This thesis attempts to contribute

to this part of the theory by proposing a general construction: our central tool is a class

3They allow to model analytic objects (local L-functions) in terms of cohomological data and thus,
relate the analytic and arithmetic side of the BSD conjetcure.

“There is also the method of Ribet(-Mazur-Wiles), generalized to the GL(2)-setting by Skinner and
Urban, and the method of Wiles ("R = T) that yields results for L-functions adjoint motives.

°T would like to avoid here the difficult task of defining what an "Euler/Kolyvagin" system is.

6the vertical relations are only required to expand the reach of the Euler System in Iwasawesque
directions.
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of operators acting on Bruhat-Tits buildings of reductive groups that we call U-operators.
They bridge the actions of the Galois group and the Hecke algebra on the free abelian group
generated by these cycles.

I.1.4 From classical Heegner points towards a general construc-

tion

In order to outline the ideas behind our general methods, we apply them to the classical
case of a modular curve, by placing the classical approach in a more conceptual group

theoretic framework.

Let N be an integer and E/Q be an imaginary quadratic field with ring of integers Op.
Assume that all primes of N split in E and let A/ be an ideal of O of norm N. If m is
prime to N, the isogeny C/O,, — C/(N N O,,)~! corresponds to a Heegner point x,, in
Xo(N)(E[m]), where E[m] denotes the ring class field of conductor m and O,, = Z+mOg
is the corresponding order of E. Set CMg := {z,,: m prime to N}. The points in CMg
are related by the following norm-compatibilities [Dar04, Proposition 3.10]:

PROPOSITION 1.1.4.1 (Distribution relations). Let m be an integer and ¢ a prime

which is unramified over E. We also suppose that mt is prime to N. In this case, we have

(i) Tame relations: Let \ be a prime of E that lies over {. If £+ m, then

0 -
TrE[mZ]/E[m] Tt = (Tg — Fr)\ — (7E> Fl")\l) T, (Il)

where, T, denotes the Hecke operator corresponding to
[GLa(Z) diag(¢, 1) GLa(Zy)],
and Fry € Gal(E[oo]/E) denotes the geomteric Frobenius.
(ii) Vertical relations: if £ | m, then

TrE[m@]/E[m} Tme = Ty — T je- (12)

Now, consider the Hecke polynomial
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where, S, denotes the Hecke operator corresponding to the double coset
[GL2(Z)diag(¢, () GLa(Zy)].

There exists an operator U; € EndzZ[CMg]|, a variant of the combinatorial "successor"

operator’, verifying the following properties:

1. The Hecke side:
Hy(Uy) = 0 in EndzZ[CMg|. (1.3)

2. The Galois side: Let £1m. For s > 1, we have
TrE[mgerl]/E[st] Lpes+1 = Z/[gxmgs, (14)

3. The Congruence side: If ¢ {m, then
Op

B =0 et (- (%)) s

where 0r denotes the different ideal of E.

The Hecke supportdTyx,,.es 1(Zs—1)=Galois orbit of x,,ps+1

It is an
easy exercise to verify that the "Hecke side (1.5) and Galois side (1./)" implies the vertical
distribution relations (I.2), while the "Hecke side (1.3) and Congruence side (1.5)" implies

the tame distribution relation (I.1).

"It may be compared with Cornut—Vatsal operator T% in [CV07, 6.3].
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1.2 Main results of the thesis

1.2.1 Previous work

In a series of papers, Jetchev and Boumasmoud—Brooks—Jetchev constructed a novel Euler
system using higher dimensional CM 1-cycles on certain 3-dimensional unitary Shimura
varieties for U(2,1) x U(1,1) associated to a CM-extension £ /F. This family of cycles is

expected to yield new results towards the Bloch—Beilinson conjectures.

The work of Jetchev [Jet16] introduced these special cycles and proved formulae for their
local fields of definition at primes that are inert in F/F, together with tame distribution
relations comparing cycles ramified and unramified at such primes. In [BBJ16] we extend
these two results to primes splitting in the extension E/F whereas, in [BBJ18|, we prove

vertical distribution relations for these cycles at primes remaining inert in F/F.

1.2.2 The Hecke side

[.2.2.1 The ring of U-operators

The notion of "successor" operators introduced by Cornut—Vatsal (denoted by T in the
GL; case [CV07, 6.3] and denoted by UyUy in the case U(3) x U(2) [BBJ1S, §3.2]) is

important in our study of distribution relation.

In Chapter [1I, we propose a generalization of these operators and prove their integrality
over the spherical Hecke algebra generalizing (1.3) and [BBJ18, Lemma 3.3]. Their
integrality will intervene crucially in our construction of horizontal and vertical norm-
compatible systems of cycles in certain general Shimura varieties. This generalization is
a purely group theoretic result, that goes beyond the framework of Shimura varieties or

Euler systems.

Let F' a local p-adic field, O its ring of integers, w a uniformizer and kp the residue
field. Let G be a reductive group over F. To ease the reading of this introductory section,
assume that G is F-split (this assumption will be dropped in the chapters I11, [V and V).

Fix a split maximal torus T, a Borel subgroup B = T - Ut with unipotent radical U*.
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Write B~ = T - U~ for the opposite Borel subgroup. Let N be the normalizer of T in G,
W = N(F)/T(F) the Weyl group and let A(G,T) be the standard apartment.

Being split, the group G has an integral model over O [BTG67, §5]. Therefore, by abuse of
notation, we denote also by G, T and U™ the corresponding integral models Op. Consider
the special maximal compact open subgroup K = G(Opf). There is a reduction map

red: G(Op) — G(kr). Let I be the Iwahori subgroup that is defined |Tit79, 3.7] by
I ={g€ G(Op) :red(g) € B(kp)}.

To ease notation, write w* for u(w) € T(F) for p € X.(T). The map p — w" induces an
isomorphism Ar := X, (T) ~ T(F)/T(OF). We have a group homomorphism v: N(F) —
Aff(A(G,T)) (see Lemma above 11.3.2.2) and Wag = v(N(F)) is called the extended affine
Weyl group. It has the following decomposition

—~

Wag = Ar x W =~ Ng(T)(F)/T(OF),

where, v(T(F)) ~ T(F)/T(OF), is its subgroup of translations.

Let H; (resp. Hk) denote the Iwahori-Hecke (resp. the Hecke) algebra that is the
convolution algebras of locally constant compactly supported Z-valued function on
G(F), that are I-(resp. K-)biinvariant. The algebra H; has the following Z-basis
{imiw := Liguypr for all whw € Ap x W} (see §I11.6).

In §I11.8, generalizing the approach of [HKP10] to any reductive group, we define ® and
study the Bernstein and Satake untwisted homomorphisms Oper, and SJ\C;}, respectively. A
key result for the study of U-operators is the following compatibility between the "integral
part" of these two homomorphisms (see Theorem [11.12.0.1 and Corollary 111.12.0.1) i.e.,
the following diagram of Z-modules is commutative:

Hi

>G
SJW

—#rlg |~ Z[AT](W’.)

~

®Bern

GBern(Z[AT](Wy.))

where, Z[A7]"*) denotes a Z-submodule of Z[A7] generated by {r, = D wew w, WO J €
Z[Ar]*} and O e (Z[A7)W*) € Z(H1(Z[q7"])) (see §111.10 for more explicit details).

8using the right #;(Z)-module of universal unramified principal series My (Z).
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Let U C H; be the subring generated by igu, 1 € Aj.. We make U acts on Z[G(F)/K]
using an embedding Z|G(F)/K] < Z|G(F)/I] (Lemma [11.14.2.1). Among other results
proven in chapter 111, the following theorem (which generalizes [BBJ18, Lemma 3.3]) is

the key for the construction of norm-compatible systems of cycles we intend to present:

THEOREM [.2.2.1 (Corollaries [11.14.2.1 & [11.14.3.1). There ezists an embedding of rings
U— Endz[B(F)]Z[G(F)/K],
such that the image of U is integral over the Hecke algebra Hy .

REMARK 1.2.2.1. This result generalizes the property 1.5 in two directions: Firstly, the
linear algebraic group GLs is replaced by any reductive group G. Secondly, the hyperspecial
mazximal compact open subgroup GLs(Zy) is replaced by any mazimal parahoric subgroup
of G(F). This settles completely the Hecke side, and allows one to even work over ramified

places when proving distribution relations.

1.2.2.2 Seed Relations

In §1V we give a proof of the fact that the U-operator attached to p € X, (T) is a right
root of the corresponding Hecke polynomial (Definition V.3.0.1):

THEOREM 1.2.2.2. Let p € X, (T) be a B-dominant cocharacter of T. The operator
O, =i € U is a right root of the Hecke polynomial Hg,y in Endp(C.(G/K, R)).

When g is minuscule, this annihilation is a "lift" (in the sense of §1V.6) of a result due to
Biiltel [Bil97, 1.2.11]. The above theorem has the potential for offering new insights into
topics beyond Euler system such as the conjectural generalization of the Eichler—Shimura
congruence relation proposed by Blasius—Rogawski [BR94, §6]. Exploring this direction is

the subject of a forthcoming paper.

1.2.2.3 Geometric interpretation

Let B(G)ea denote the reduced Bruhat-Tits building of G and, A C B(G),eq be the
apartment corresponding to the split maximal torus T. Let a € B(G),eq be the unique
alcove of the reduced building fixed by the Iwahori subgroup I. Let a, be the special
vertex corresponding to K, it belongs to the closure of a. Let C be the unique vectorial

(spherical) chamber containing a with apex a, and C the opposite vectorial chamber.



1.2 Main results of the thesis 9

In §V.1, we will use the notion of retraction to translate the purely group theoretic U
operators into a more combinatorial fashion. This will provide a new ring U of geometric
operators on the set of special vertices justifying why U-operators may be thought of as
a conceptual generalization of the successor operators for trees with a marked point as
in the GLy case (denoted by T in [CV07, 6.3]) and the case U(3) x U(2) (denoted by
UyUy in [BBJ18,; §3.2]).

In §V.2, we present an alternative geometric point of view for the geometric operators ring

U using the notation of filtrations, this was suggested by C. Cornut.

I.2.2.4 Compatible systems of vertices

Consider now a subgroup H of isometries of B(G)eq. In §V.3.2, we generalize the series of
Lemmas proved in [BBJ18, §3.2] which gives an alternative approach for the main theorem

of loc. cit. (see Remark V.3.2.1). The main result of §V.3.2 is:

THEOREM 1.2.2.3. Under a technical assumption (Mfng) (See §V.3.2), there exists a

sequence {a, }new (Wwith ag = a,) of vertices in the chamber C, such that

W
Z Ak Trn+k,n(an> =0 (Trn-l-k,n = Z h)7
=0 h€Hp1/Hn

where Ay, € Hy and H, is the stabilizer in H of the geodesic segment [ay,a,]. We call

{an}new a H-norm compatible system of vertices.

I.2.3 The Gan—Gross—Prasad setting

Gan, Gross and Prasad formulated some conjectures’ relating special values of derivatives
of automorphic L-functions to heights of certain special cycles on Shimura varieties
constructed from embeddings of reductive groups, e.g. [GGP09, Conjecture 27.1]. In
this thesis, we consider the case of special cycles on higher-dimensional Shimura varieties,
where the embedding Resg g Gy, r = GLg g defining Heegner points is replaced by an
embedding of unitary groups U(n—1,1) < U(n, 1) x U(n—1, 1) generalizing the situation

considered in §1.2.1.

9These conjectures may be thought of as Gross—Zagier-type formulas the cycles being generalizations
of classical Heegner points.
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(§VI.2) Let E be a CM field, that is, an imaginary quadratic extension of a totally real
number field F. Set [E : Q] = 2[F : Q] = 2d. Let 7 be the non-trivial element of
Gal(E/F). Fix an integer n > 1. Let W be a Hermitian E-space of dimension n and
of signature (n — 1, 1) at one fixed distinguished embedding ¢: E < C and, of signature
(n,0) at the other archimedean places. Let D be a positive definite Hermitian E-line.
Consider the n + 1-dimensional Hermitian E-space V =W @ D, it has signature (n, 1) at

the distinguished archimedean place and, signature (n,0) at the other ones.

We consider the F-algebraic reductive groups of unitary isometries U(V) and U(W). Set
Gy := Respjq U(V) and Gy := Resp/q U(W). We identify Gy with the subgroup of
Gy. Let G = Gy x Gy and H = A(Gy) C G, where A denotes the diagonal embedding
A: Gy — G.

(§VI.1) Let Xy be the Hermitian symmetric domain consisting of negative definite lines in
V ®p, R and similarly let Xy be the set of negative definite lines in W ®p, R. Setting
X = Xy x Xy, the diagonal embedding W < V & W induces an embedding of Hermitian

symmetric domains Ay into X'; set ) for the image of Ay .

(§VI.7) The two pairs (G, X) and (H,)) are Shimura data. For small enough compact
open subgroup Kg C G(Ay) (resp. Ku C G(Ay)), the Shimura variety Shig (G, X)
(resp. Shy, (H,))) is a complex quasi-projective smooth variety whose C-points are given
by

G(Q\(X x (G(Ay)/Kg)) (resp. H(Q\(Y x (H(Ay)/KHn))),

where G(Q) (resp. H(Q)) acts diagonally on X x (G(Ay)/Kg) (resp. YV x (H(Af)/Kn)).
In fact, these varieties are defined over the reflex field £ = E(G,X) = E(H,)) (See §V1.5
for the calculation of the reflex field).

(§VIL.1.2.2) For x € {W,V}, we fix any compact open subgroups K, C U,(Ap ). There
exists a finite set S of places of F' (§VII.1.2) such that K, is of the form K, ¢ x K2
where K, g is some compact open subgroup of U*(A% f) and K? is the product of the
hyperspecial compact open subgroups K,, := U,(Og,) C U,(F,) for all v ¢ S. In
particular, Ky, = Ky, N Uy, (F,). Set K, := Ky, X Ky,.

(§VI.11& §VI.12) For every g € G(Ay), we will denote by 3, the n-codimensional H-special
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cycle [V x gK| C Shg (G, X)(C), as defined in Definition VI.12.0.1. Set,
Zax(H) = {35 :9€ G(Ay).}
The natural map G(Ay) = Zg x(H) given by g — 3,, induces the bijection

Zax(H) ~H(Q)Za(Q\G(A)/K,

where Zg ~ T! denotes the center of G.

(§V1.13) The H-special cycles Zg (H) are all defined over the transfer class field E(oo)
(§VI.14).

(§VI.15) The Galois group Gal(FE(oc0)/E) acts on the set of special cycles through the left
action of H(A ). More precisely, for every o € Gal(E(c0)/E), we let h, € H(Ay) be any
element verifying Arty(det(h,) - TH(Q) = 0|p(x). For every g € G(Ay), we have

U(ﬁg) = Jhog-

The ultimate goal of the thesis is to construct a family of cycles verifying a tame/vertical

distribution relations at inert and split places, respectively.

1.2.4 Main theorems on distribution

Set Ps, for the set of primes of F' that are split in £/F and do not belong to S (see
§VII.1.2.3). Denote by N, the set of square free products of primes in Ps,. For every place
v in Py, corresponding to the prime ideal p, € Ny, let w be the place of E defined by the
embedding ¢,: F — F, fixed in §VI.1. We denote by 9,, the prime ideal of O above p,
corresponding to the place w, and set Fr,, for the corresponding geometric Frobenius'’. Let
Frob,, € T!'(A;) be any element such that Arty(Frob,)|p(cyum.w = Fry, where E(oco0)um®

is the maximal unramified at w extension in E(co).

I[.2.4.1 Congruence relations

As we have pointed out in the Heegner point case, the horizontal norm compatibility
relation above are derived from local divisibility results (see Lemma VI1.2.5.2 and Theorem

VII.1.9.1) generalizing the congruence equality (1.5):

1OWhich induces = — =% on the residue fields of E" (resp. E%" and EY").
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THEOREM 1.2.4.1. With the above notation, we have
H,(Frob,)([1],) =0 mod ¢, ! (@—1) in Z[qv_l][Hder(Fv)\G(Fv)/Kv]v

where H,, is the Hecke polynomial attached to Shi (G, X) at the place w of the reflex field
E=FE(G,X)(see VII.2.3).

1.2.4.2 Tame relations

As a corollary of Theorem VII.1.9.1, we obtain local horizontal relations in Corollary

VIL.2.5.1, from which we derive the tame relations.

In §VII.1.2.3, we fix a cycle & = 34, for any go. There exists a field I (§VI1I.1.3) over
which the base cycle 34, is defined and such that:

THEOREM 1.2.4.2 (Horizontal relations). There exists a collection of cycles & C Zq, '|[Za,x (H))
(for all § € Np) each defined over KC(f) (constructed in §VI1.3.1) such that for every place
v € Py, with p, 1§, we have

(Fl‘w) ff Tl"lc (pof)/K( f)fpm

where, H,, is the Hecke polynomial attached to Shx (G, X) at the place w of the reflex field
E =FE(G,X) defined by t,.

REMARK 1.2.4.1 (Vertical relations). In a forthcoming paper we also prove vertical norm-
compatible systems. Using the integrality of U-operators one gets a result on distribution
relations similar to Theorem [.2.2.5: for every place v € Py, there exists a family of cycles
Eom € Za.x(H), m € N, such that

1. The cycle &, , is defined over the field IC(pl').

2. For m > 0, one has Z ) ¢ Try m+iy i my Gomrs =0 € Zlq, [ Zc.x(H)], where,

the C;s are fived operators in the local spherical Hecke algebra.

We will also prove tame/vertical norm relations for inert primes of F'. We believe that this

treatment should also give similar results for other embeddings of Shimura data.
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I.3 Applications

I.3.1 Universal norms for Conjugate-Dual Galois Representations

of Galy

Obtaining the vertical distribution relations for our norm-compatible systems in the inert
case allows to prove results on the Bloch-Kato conjecture over the anticyclotomic Z,-
extension for automorphic forms on the considered group G. These results are analogues
of a form of the Iwasawa main conjecture formulated by Perrin-Riou in [PR87] which
relates Heegner points to the Selmer group of an elliptic curve over the anticyclotomic

Z,-extension of K.

More precisely, let p € Py, and let 7 be the distinguished automorphic representation as in
[GGP09, §27| that is unramified at p. Assuming that 7 is cohomological, one can consider
the associated conjugate self-dual A-adic Galois representations (p, ., V') constructed in
the middle-degree cohomology of Shi (G, X) attached to 7. Here, V' is a L-vector space
with dim;, V' = n(n + 1) and L is a sufficiently large finite extension of Q, with ring of
integers O,. Let T C V be a Galois stable lattice and set W =T ® L/O,.

Let K« be the anticyclotomic Z,-extension of K and let K, be the n'" intermediate finite
extension in the anticyclotomic tower (i.e., the unique subfield of K., of degree p™ over
K). Define the discrete and the compact Bloch-Kato Selmer groups as H}(ICOO, W) =
lim | H}(ICn, W) and H}(ICOO, T):= Hm H}(IC,L, T), respectively, (here, the limits are with
respect to restriction and corestriction, respectively, and the local conditions defining the
Selmer group). For the sake of brevity and simplicity we chose to ignore most of the
technicalities. For a sufficiently large ring of integers O of some number field L, one thus

has a specialization
n(n+1

)
Hy(z;m,) = Z C;z' € O[2].
i=0

where C;’s are as in Remark [.2.4.1. Let O, be the completion of O at a choice of prime A
above p, and enlarge O if needed until a root of Hy(.;m,), say £ lies in O,. The distribution

relations above gives with the same recipe in [BBJ18, §5] the following:

PROPOSITION 1.3.1.1. Under the "ordinarity assumption” (that v,(c) = 0) one gets the
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family of norm-compatible cycles mentioned previously: For every m > n(n+ 1) — 1, there

is a cycle &, € OA\[Zx(G,H)] (depending on o) such that

Trm-i-l,m(gm—&-l) - gm S OA[ZK(G> H)] (1'6)

Consider'’ the rational equivalence class [{] € CH"(Shg(G, X))q of the cycle £ €
O[22k (G, H)|. Using the diagonal cycle Agyy  xsng,, and the Chow-Kiinneth projector
Ay shye, x Shic,, € CH*""!(Shg, x Shg,, x Shg, x Shg,, )q, We can construct a cohomolog-

ically trivial algebraic equivalence class:

[€lo == (Ashye, xShiy, = Dashi, xShyy, )(§) € CHG(Shi, X Shey, )o-

Suppose now we are given a free rank n(n + 1) Galois-invariant irreducible submod-
ule Ty of the 7 -equivariant component'” of H2 ' (Shg (G, X), F) ® Oy. Define 20, =
COTESKC[oo0]/Koe (AJp([gm]o)> € H' (Koo, H"(Shi (G, X), F)), and write 2, for the image
of 20 in H*(K,,, T)). It follows from (I.6) that the system {z,} is norm-compatible and

hence it makes sense to define
Zoo = I&HZ,1 c H' (K, Th). (1.7)

The span of z,, gives a submodule Hy, := A - 2, C H}(ICOO, Ty).

Now, having our compatible norms, it should not be too hard to state analogs of Mazur’s
conjecture for them [Maz83|"*. However a good higher dimensional analogue of the latter
conjecture should not only deal with "one possible" norm compatible family, but somehow
it should look at all of them simultaneously, i.e. it should be an assertion about some
submodule of a big Selmer group over a big Iwasawa-type algebra, maybe. A preliminary

version of such a generalized conjecture would be formulated as follows:

CONJECTURE 1 (non-vanishing of the universal norms). There exists an integer ng such

that z, is non-torsion for all n > ny.

Write A = O0,[[Gal(K/K)]]. One has the following conjecture:

HFor ease of reference, the injectivity of the Abel-Jacobi map among other crucial details and hypothesis
are omited here.

12The Eulerian argument depends heavily on the component of the Kunneth decomposition of
Hgt"_l(ShK(G,X ), F)q in which the representation T is picked. A priori, the interesting ones lies
in H ' x HZ..

13The Mazur conjecture [Maz83| claims the non-triviality of the p-adic anticyclotomic Euler systems
attached to special CM points on Shimura curves over totally real number fields. It was proved by Cornut
and Vatsal. Proofs of Cornut and Cornut—Vatsal [Cor02, Vat03, CV05, CV07] rely on Galoisian properties
of Heegner points and Andre-Oort proven case (They also propose an ergodic alternative using Ratner’s
theorem).
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CONJECTURE 2 (Bloch-Kato over K). (i) The compact Selmer group H}(ICOO, T) is

a free A-module of rank 1.
(ii) The discrete Selmer group satisfies: corankyaHy (Ko, W) = 1.

A key ingredient in the proof of the analogous conjectures for elliptic curves (see [Ber95,
Cor02, Nek01, How04]) is the so-called Heegner module of universal norms, which is a free
A-submodule of the compact Selmer group defined using a norm-compatible system of
Heegner points defined over the finite extensions KC,, in the anticyclotomic tower. They are
analogue to {z,} defined above. Assuming Conjecture 1, i.e. the universal norms module
H, C H}(ICOO, T) is free of rank 1, one can use that module to better understand the
structure of the discrete module Hy (K, W) and tackle:

CONJECTURE 3 (Bounding Selmer groups). Let Xo, = Homg(H} (Koo, W), L/O,) be the
Pontrjagin dual of the discrete Selmer group. Then Xo ~ A ® M @& M, where M is a
torsion A-module satisfying chary(M) | chary(H} (Koo, T')/Hoo).

1.3.2 Arithmetic applications via split Kolyvagin systems

Kolyvagin’s original argument (see [Kol90, Kol91a, Kol91b, Kol91lc, Gro9l] as well as
[How04]) uses the tame norm relations at inert auxiliary primes. In all these variants of
the same fundamental argument, one uses the fact that the global cohomology H' (K, T)
(resp., the local cohomology groups H'(KCy,T)) decompose into two eigenspaces H'(KC, T)*

(resp., H'(KCx, T)*) for the action of a complex conjugation on the residual representation

T.

Instead of applying global duality for the entire cohomology H'(K,T), one does that for
each of the eigenspaces H'(K,T)* and crucially uses the fact that if X is a Kolyvagin
prime then H} (K, T)* (being isomorphic to (T'/(Fry —1)T)*) are both one-dimensional.
In the case when the residual representation 7' of G need not extend to a representation
of G, one can no longer apply the duality for the 4-parts of the corresponding Selmer
groups. If one attempts to use inert special primes A, the local condition at A will no
longer be one, but higher-dimensional and the same argument with global duality will no

longer work.

Very recently, Jetchev, Nekovar and Skinner [JNS18| have managed to solve this problem
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by using split instead of inert auxiliary primes. In this case, if w and w are the two places
of K above a split place v of F', one applies the duality simultaneously for w and w where

the local term in the duality becomes
H'(K,,T)/H,, (K., T) ® H' (K3, T)/ H,, (K3, T).

By using a suitable application of the Cebotarev density theorem, Jetchev, Nekoval and
Skinner still manage to run the argument, this time avoiding completely the action of
complex conjugation on the residual Galois representation and the corresponding Selmer
groups. The Kolyvagin systems obtained in this manner are referred to as split Kolyvagin

systems.

This application of the methods of Jetchev, Nekovar and Skinner to the Gan—Gross—Prasad
setting above, relies in a key way on the major theorem proved in this thesis: the tame
norm relations at split primes. This allows the construction of a split Kolyvagin system
for cohomological Galois representations appearing in the middle-degree cohomology for
Shimura varieties associated to certain product unitary isometry groups U(V') x U(W)

that appear naturally in the context of the Gan—Gross—Prasad conjectures [GGP09].
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The construction of norm-compatible families of special cycles that we intend to present
here relies on a ring of U-operators. The definition and the study of this latter ring will
require very different tools from the theory of Bruhat—Tits. In this chapter, we set the
necessary notations, recall some background and give a concise reminder on some of the
key objects. We will also have the opportunity to provide relevant references for more

complete treatments. Proofs (resp. Remarks) will be ended by OJ (resp. A).

II.1 Generalities on reductive groups: absolute case

I1.1.1 Algebraic groups

Let k be a field of characteristic 0 and let k/k be a fixed choice of an algebraic closure. Let
G be an algebraic group over k& '. We will be primarily interested in reductive/semisimple

groups.

By [Mill7a, Corollary 4.10], we know that G admits a faithful finite-dimensional repre-
sentation. Using such a representation, one can identify the semisimple and unipotent
parts of elements of G(k)?. The unipotent radical R, (G) is the largest connected normal
unipotent”’ subgroup of G. The group G is said to be reductive if R,(G) is trivial. The
largest connected solvable normal subgroup of G is called the (solvable) radical R(G).
The group G is said to be semisimple’ when R(G) is trivial. Since unipotent groups are
solvable, we have R,(G) C R(G). If H is an algebraic subgroup of an algebraic group
G, denote by Ng(H) and Zg(H) its normalizer and centralizer in G, respectively. In
addition, Zg := Zg(G) will denote the center of G.

From now on, we will fiz a reductive group G defined over k until the end of §11.2.

!That is, by definition, a reduced affine group scheme of finite type over k.

2For every g € G(k), there exist unique elements g5, g, € G(k) such that, for all representations (V,r)
of G, r(gs) is semisimple and, r(g,) is unipotent. Furthermore, g = gsgu = gugs [Mill7a, §9.20].

3A subgroup of G is unipotent if k-points consists of unipotent elements (have trivial semisimple
part).

*Actually, semisimpleness (resp. reductiveness) requires the geometric groups R(Gy) (resp. R,(Gy))
to be trivial, but since our field is perfect (char(k) = 0) this is equivalent to the definition given above
[Mil17a, Propositions 19.2 & 19.10]. Let us also point out that we chose to omit the notion of smoothness,
since by a theorem of Cartier, algebraic groups over characteristic zero fields are automatically smooth
[Mill7a, §3.23].
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I1.1.2 Tori

DEFINITION I1.1.2.1. A connected k-algebraic group T is called a k-algebraic torus (or

k-torus) iof Ty, =~ G' + for some r € N.

The integer r is called the rank of T and will be denoted rk(T). A k-torus T is called
k-split if there exists an isomorphism T ~ G, , of k-groups. A k-torus T is said to be

anisotropic if it contains no k-split subtorus.

Every torus T, has a unique maximal k-split subtorus S and a unique maximal anisotropic
subtorus A. Define the k-split rank of T to be 1k;(T) := rk(S). We have an isogeny
m:S x A — T, and SN A is finite [Spr98, 13.2.4].

For every torus T in G, both its normalizer and centralizer are also defined over k [Spros,

13.3.1], in addition, Zg(T) is connected, reductive k-subgroup of G [Spr98; 15.3.2 (i)].

DEFINITION I1.1.2.2. The pair (G, T) is called a split reductive pair over k if T is a
k-split mazimal torus (Such torus exists by [Spr9s8, 15.5.6]).

II.1.3 Digression on tori Res, /g Gy,4

In this section, we present a few facts about tori of the form Ress,p Gy, 4 for a quadratic
extension A/B of characteristic 0 fields. We will encounter similar tori for various choices
of extensions A/B, for example C/R which will be used to define Shimura varieties. We
will subsequently define and compute the associated norm-restriction map, this latter will

be useful for defining the Reflex norm map and Deligne’s reciprocity law for tori.

I1.1.3.1 Weil restriction - quadratic case

Let A/B be a quadratic extension of characteristic 0 fields and let o be the non-trivial
element of Gal(A/B), and fix a algebraic closure B* of B containing A . Consider the
B-torus T = Resa/p Ga. For every B-algebra R, we have T(R) = (R®p A)*. Now if
R is a A-algebra, let R denote R equipped with the o-conjugate A-linear structure (i.e.,
compose A — End(R) the given A-structure of R, with the map o). The natural map

A®pR—R®R, a®7r+~ (ar,a’r)
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is an isomorphism of A-algebras. In addition, the natural action of ¢ on A ®p R via
a®r + a’ @r, transports by the above isomorphism to an action on R @® R sending r & 1/

to ' @ r. Thus T(R) ~ R* x R”, which shows that after a base change to A, we have
TA = Gm,A X Gm,A;

where the factors are ordered in the way that T(B) = A* — T(A) = A% x A" is the map

a — (a,a”). In particular, the group X*(T) = X*(T), is generated by two characters x

and Y such that the induced maps on points A* = T(B) C T(A) = G, a(A) = A* are

a — a and a — a“, respectively.

Define the cocharacter pr: Gya — T4 (resp. fip) to be the unique one such that
X o por is trivial and y o up = Id € End(G,, 4) (resp. such that y o @ is trivial and
X o fip = Id € End(G,y, 4)). On A-points, we have pp: AX — Ty(A) ~ AX x A”, is given
by a — (a,1), and fgp(a) = (1, a).

I1.1.3.2 Norm-one tori

The absolute Galois group of B acts on T(B“) through its projection on Gal(A4/B)".
More precisely, for any A-algebra R equipped with a Gal(A/B)-structure (e.g. A), there
is a canonical action of Gal(A/B) on T(R) defined by

o: T(R)~R*x R +— R*xR", (a,b)— (17,a°).
Now if R is only a B-algebra, using the canonical embedding R < S = A ®p R (this
latter has a Gal(E/F)-structure), we may identify the R-points of T with

T(R) = T(S)GA/B) ~ (G 5 §F)GallA/B) — {(s,87):s€ 8*}.

Likewise, the absolute Galois group of B also acts on the character/cocharacter group of
T through its projection on Gal(A/B), we actually have 7 =X and u§ = fip. Indeed,
let (a,b) € T(A) ~ AX x A" we have by definition of the action Gal(4/B) on characters
(see [1.1.4)

X7(a,b) = ox(07"(a,0)) = a(x(b7,a%)) = (V") = b = X(a, b).

Recall that the Z-module X*(T) is generated by x and ¥, thus it is described explicitly

as follows X*(T) = {Xnym, := n1Xx + naX® for ni,ny € Z} ~ Z*. Now we consider the

SThere are two actions of Gal(B%/B) on T(B%): the algebraic action on T, which factors through
Gal(A/B), and the arithmetic action, which acts on B*, and does not factor through Gal(A/B).
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following homomorphism of Gal(A/B)-module Tr, ;: X*(T) — X*(T), given by ¢ —
1 — 7. It yields the following Gal(A/B)-submodules

X(T) :=kerTry = {Xnime € X(T): X0y = Xnuma )

= {xmm € X*(T): m € Z}
and

XO(T) = Im TI”Z/B = {Xm,nz € X*(T) Xn1,n2 + Xgl,nz = O}
= {Xmm € X*(T): m € Z}.

Then the exact sequence

Tr:l/B

0 — X°(T) — X*(T) —— Xo(T) —— 0

induces (see Remark 11.1.4.1) an exact sequence of B-tori

N
A/B>

1 o > T TS > 1

)

where, Ny/g: T — T° ~ G,, p denotes the norm map, mapping any element of a ®
r € T(R) = (A®p R)* (for any B-algebra R) to the product of its images under all
Galois automorphisms aa® ® 72, or equivalently, if we use the identification T(R) =~

{(s,57) : s € S*} where S = A®p R then"
Ny/p(s,s7) = (s57,557). (IL.1)

The torus T® ~ G,, p is the maximal B-split quotient of T, since X*(T*) = X(T) =~
X*(Gyn ) is the maximal submodule on which Gal(A/B) acts trivially. Likewise, T* is
the maximal anisotropic subtorus of T since X*(T®)%I(4/B) = X(T)%alA/B) = [0} (see
[Spro8, 13.2.4]), and T is generated by its B-subgroups T® and T*, with intersection js

the subgroup of 2 roots of unity (see below).

Let R be a B algebra and S = A®p R, using again the fixed identification T(S) ~ §* x S~
and (I1.1), we obtain a description of R-points for the above subtori
T R) ~{(s,s7): s € S*,ss° =1} and T°(R) ~ {(s,s): s € S*}.

The subtorus T* = ker(N4,p: Resa/p Gma — Gnp) = ResS}B G4 is what is called the
norm one torus associated to the extension A/B, and we will be denoted by U(1)4,5 or

simply U(1) when the extension is clear from the context.

5Here, o acts by swapping the components. When we compute norm maps, we use the non-canonical
Galois actions for algebras, the one that just swaps component, but when we acts on rational points of the
groups then we should use the canonical one defined previously which is swapping components twisted o.



22 CHAPTER II. PRELIMINARIES

I1.1.3.3 The norm-restriction map

Let R be an A-algebra with a Gal(A/B) structure. Recall the identification
U(1)a/8(R) ~ {(a, b)e R xR Ny/p(a,b) = (ab,ab) = 1} ={(a,a”"): a € R*}
The canonical Galois action of o on T(R) defined above, maps an element (a,a™') €

U(1)4/p(R) C T(R) to ((a™')?,a”). Accordingly, we get a canonical action on Uy,p(1).

Let A € X.(Uy/p(1)) be a cocharacter, A must be invariant under the action of Gal(A/B),
thus it is defined over A and factors through A: G,, 4 — Ua/p(1)4. Consider the norm-

restriction map,
Nu s T 22 Res 4 Uyp(1)4 — 22 Usyp(1).
Let R be a B-algebra, and set S = A ®q R, we have
Resa/p Ua/p(1)a(R) = Uy p(1)(S) = {(a,a‘l): a € RX}
therefore, if s € T(R) = S*, then
Nu,,sma(8) = Nass (A(s),A(s)™) = (/\<S)07 A05)

summarizing, projection to the first factor shows that

Nu, st T(R) —— Ua/p(1)(R), § —

If, in particular, A = x — x7 € X,(Uy4,/p(1)) = Xo(T), then one gets an exact sequence of
B-tori

S
E i vl

1 > T > T —— Uy/p(l) — 1. (I1.2)

where, T® = ker Ny, ,(1),x—x-- For later use, we will denote the map Ny ,,,1)x—x= by

Nu,, )

I1.1.4 Characters and cocharacters

DEFINITION I1.1.4.1. A character (resp. cocharacter) of a k-algebraic group H is an

element of
X*<H)E = HOH]E(HE, Gm’g), Tesp. X*(H)E = HOHlE(ij, HE)
Composition defines a perfect pairing

<,>: X*(H)E X X*(H>E — HomE(GmE, Gm,%) ~ 7.
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More generally, for a k-algebra A, we can also define the groups X*(H)s := X*(Hy,)
and X,(H), := X.(H,). For example, X*(T); = Homy(H, G,,) denotes the group of
k-rational characters of T. Since all tori split over a finite separable extension, we have an

identification

XH(T) = X*(G™) 2 7™,

over the algebraic closure k. The set X*(T); has a Gal(k/k)-module structure defined as
follows: The action of an element o € Gal(k/k) on any x € X*(T)z is defined by base
change of y through o, this action is given on k-points by

aoX:aoXoa’l.

Observe that Gal(k/k) acts trivially on x if and only if y is defined over k. From now on,
we will omit the subscript & when we write the characters and cocharacters lattices, i.e.

X*(T) (resp. X.(T)) instead of X*(T); (resp. X.(T)y).

REMARK I1.1.4.1. The association T — X*(T); is an anti-equivalence between the
categories of k-tori and the category of Gal(k/k)-modules that are free of finite rank over 7.
In fact, it yields an anti-equivalence between the category of k-tori split by a finite Galois
extensions k' [k and the category of free finitely-generated Gal(k'/k)-modules. See [Pool7,
Theorem 5.5.7] for a proof. In [GD70a, X, Proposition 1.4/, one can find a generalization

that classify the groups of multiplicative type over k.

I1.1.5 Decomposing reductive groups

Let G%" denote the derived group of G [Mill7a, Definition 6.16] and G* = G /Zg its
adjoint quotient [Mill7a, 17.62]. These groups sit in the following diagram [Mill7a, §19d|

Z(Gder) ___________ 5 Gder
Za G G
G/Gder

that has the following properties
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e The quotient group G/G%" is a torus [Mill7a, Proposition 12.46b].

e The column and row are short exact sequences of algebraic groups.

e The diagonal maps are isogenies with common finite kernel Z(G%") = Zg N G%"
[Mill7a, 19.21 & 19.25],

e 1k(G%") = 1k(G) — dim Zg * [Mill7a, Proposition 19.21].

EXAMPLE I1.1.5.1. In the case of the linear algebraic group GL,, for some integer n, the

above becomes:

G, NSL,, = pty, ——-------- » SL,,
va GL, PGL,
T T
G,

11.1.6 Weyl group 1

Let T be a maximal torus of Gy. The Weyl group W (G, T) of Gy with respect to T is
the finite étale group scheme mo(Ng(T)), hence

W(Gy, T) = Ng(T) /N (T)° = Na(T)/Zg (T) = Ng (T)/T.

By definition of the group of connected components, Ng_(T)° is the unique normal
subgroup of Ng_(T) such that Ng_(T)/Ng_(T)° is étale. In addition, we have a connected-
étale sequence

Ng,(T)° = N (T) = mo(Ne, (T)).

This shows the first equality. The second one follows from the rigidity of tori Ng_(T)° =

Za (T) and the third one is a consequence of the maximality of T'.

The finite étale group W (Gy, T) acts by definition faithfully on T and hence, on X*(T)
and X, (T) [Mill7a, 17.41].

"The rank (resp. k-rank) of G is the dimension of a maximal torus in G (resp. the dimension of a
maximal k-split torus in G). They are denoted respectively rk(G) and rkg(G).
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II.1.7 Root datum

Let (Gg, T) be a split reductive pair over k, and let gz be the Lie algebra of Gz. Consider
the restriction of the adjoint representation Ad: G — GLg_to T. The induced action of T
on gy decomposes the latter into a direct sum of spaces g,, for the characters o € X*(T),

where

0o ={X €gz: Ad(t) - X = a(t)X for all t € T}

The nonzero characters of T that appear in the representation (gz, Ad) are called the roots
of (G, T), and the g, are called the root spaces. These roots form a finite subset of X*(T)
denoted ®(G, T). We have gy = gg = Lie(T) = t. We get a decomposition

g=te P g

We are ready to introduce the first important structure theorem for reductive groups over

k [Mil17a, 21.11].

THEOREM I1.1.7.1. For every a € ®(G,T), let T, be the torus ker(a) C T and set
G, = Za(T,).

1. The pair (G, T) is split reductive over k of semisimple rank 1.

2. The Lie algebra of G, is equal to t®D g Dg_n, and dimz g, = 1 = dimy g_,. Moreover
QN O (G, T) = {£a} fora € (G, T).

3. We can "exponentiate” g, to obtain a canonical k-subgroup U, of G (the root group)
1somorphic to G, and normalized by T, on which T acts through the character «,
1.€.

t-u(a) -t =wu(a(t)a), Vte T(R),Va e Gu(R), VR a k-algebra.

In addition, Lie(U,) = go, and a smooth algebraic subgroup of G contains U, if

and only if its Lie algebra contains g,.

4. The Weyl group W(G,, T) contains exactly one nontrivial element s, and it is

represented by an n, € Ng, (T)(k).

5. There exists a unique o € X, (T) such that
so(r) =1 — (x,0")a, V€ X*(T).

In addition, we have (o, ") = 2.
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0. GE = <T,Ua € @(GE7 T))

COROLLARY II.1.7.1. The system R(Gg, T) = (X*(T), (G, T), Xi(T), ®(G#, T)Y) is

a reduced root datum®, i.e., the following conditions holds

1. For each o € (G, T), (a,a") = 2, 5,(P(G5, T)) € ®(Gy, T), and the group
W(R(G%, T)) = (sa: @ € D(Gy, T)) generated by {so} for o € (G, T) is finite.
2. R(Gy, T) is reduced, i.e. if o € ®(Gg, T) then 2a ¢ O(Gy, T).

Proof. This is [Mill7a, 21.12]. O

The importance of the root datum resides in a fundamental result (Theorem I1.1.11.1), it
says that the ordered quadruple R(Gg, T) contains enough information to characterise
G over k. When there is no source of confusion, we omit the split reductive pair in its

notation, i.e. R, W(R).

REMARK I1.1.7.1. The root groups {UQ}QEQ(GE,T) gwe an alternative description of the
root system of R(Gy, T) without involving Lie algebras, since these groups are exactly the

algebraic subgroups of G that are stable by conjugation by T and isomorphic to G,.

REMARK I1.1.7.2. We have seen in Theorem I1.1.7.1 the existence of a coroot o for
each root a.. Let us now describe briefly how this construction goes. For each o, we have

an exact sequence

T, T G,

Let G denote the deriwed group of G,. Then G is a split semisimple group of rank 1,
and T* := (G*N'T)° is a mazimal torus in G*. In addition, this torus is sent by « to

G- There is unique cocharacter «": G, — T* C T such that (o, ") = 2.

More explicitly, let u,: G, — U, C G giwen by the Theorem [1.1.7.1. Identify G, with

C SLs. By Jacobson-Morozov theorem [Bou75, VIII.11.2] we know that we
1

can extend this homomorphism to a homomorphism SLy — G such that the diagonal torus

a
1s sent into T. Now, if we compose with the character a — we will obtain a

cocharacter o¥ € X,(T) that verifies a o a¥ = 2.

8See [GD70b, XXI §1.1] for the definition or [Mill7a, C.37].



I1.1 Generalities on reductive groups: absolute case 27

I1.1.8 Positive and simple roots

Most of the details of the present subsection can be found in [Bou68, VI - §1] or [Mill7a,

Appendix C|. Let V := (®(Gy, T)) ®z Q, where (P(Gg, T)) € X*(T)(k) denotes the
Z-linear span of ®(Gy, T).

PRroPOSITION I1.1.8.1. The pair (2(Gs, T),V) is a root system.

Proof. To be a root system, the pair (®(Gg, T), V) must verify the axioms [Bou68, VI -
§1 Definition 1]. These properties can be extracted from Theorem 11.1.7.1 and Corollary

[1.1.7.1, we list them here:

1. ®(Gy, T) is finite and does not contain 0,
2. Foreach a € ®(Gy, T) there exists a¥ € V'V such that (o, ") = 2 and (®(Gy, T), )

3. Recall from Theorem [1.1.7.1(5) that for each v € (G, T) we have a reflection on
V defined by s,:  — x — (x,a")q, and we have s,(®(Gz, T)) = &(G, T). O

The Weyl group W(®(Gy, T)) of the root system (®(Gg, T),V) is by definition the

subgroup of automorphisms generated by the reflections s,:
W(P(Gg, T)) :== (sq : @ € &(G4, T)) C GL(V).

Define the root hyperplanes H, for a € ®(Gg, T) to be the set of vectors in V'V orthogonal
to o

H,={veV:{(av) =0}

Let C be a Weyl chamber, that is a connected component of Vv \ Uaea(G, 1) Ha Fix
any v € C. Let &} = {a € ®(G;, T) : (a,v) > 0}. Thus ®; what is called a system of
positive roots [Mill7a, C.21] for ®(Gy, T) and is independent from the choice of v in the
Weyl chamber C, this is why we will denote it ®F or simply ®* when there is no risk of
confusion. We will write ®; or &~ for those roots with (a,v) < 0. The map C — &}
defines a one-to-one correspondence between the set of Weyl chambers of (®(Gg, T), V)

and the set of systems of positive roots.

Fix a Weyl chamber C. A root a € ®/ is said simple if it cannot be written as a sum of

two roots in ®/. The set of simple roots in ®/ is called the associated simple system A¢

€ Z,
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(or simply A if the choice of the Weyl chamber is clear from the context). We have the

following properties:

1. If & € A then #(s,(®T)NDT) = #(PT) — 1.

2. The set A is base for ®, that is a basis for V' and every root is a linear combination
of elements A with integral coefficients that are all of the same sign.

3. The reflection group generated by the reflections (s, : @ € A) = W(®(Gg, T)).

4. The Weyl group W(®(Gy, T)) acts transitively on Weyl chambers or equivalently

on positive systems, mapping simple roots to simple roots.

I1.1.9 Weyl groups II

In this subsection we will see how the Weyl group W (G, T) is related to the Weyl group
of the root datum W(R), and to the Weyl group of the root system W (®(Gy, T)).

THEOREM I1.1.9.1. [Mill7a, 21.37 & C.30] The Weyl group W(Gg, T) is generated by
the distinguished elements s,, o € ®(Gg, T). Moreover, we have a natural identification

between the Weyl group of the root datum W(R) and the Weyl group of the associated root
system (®(Gy, T), V).

COROLLARY 11.1.9.1. There is a canonical isomorphism W (®(G%, T)) = W(R) —

W(Gg, T) (k).

Proof. By definition we have a natural identification between W(R) the Weyl group
of the root datum R and W(®(Gy, T) the Weyl group of the associated root system
(®(G, T),V) |Mill7a, C.30]. For the complement of the proof see [Mill7a, 21.38] and
we recommend the discussion below [GH19, 1.20] and the proof of [GH19, Proposition
1.8.1]. O

We then have
W(Gg, T)(k) = (Ngg(T)/T)(k) = Na.(T)(k)/T(k),

where the last equality follows by Hilbert Satz 90.



I1.1 Generalities on reductive groups: absolute case 29

I1.1.10 Borel subgroups

A Borel subgroup B of Gy is a maximal closed connected solvable subgroup. Any maximal
torus is contained in a Borel subgroup [Mill7a, 21.30|, and conversely any Borel contains

a maximal torus. Let B be a Borel subgroup of Gy containing T, then the set of roots
of :={a € ®(G£, T) : g, € b :=Lie(B)}

is a system of positive roots in ®(Gy, T). Conversely every such system arises from
a unique Borel subgroup containing T [Mill7a, 21.32]. Therefore the Weyl group of
W (Gg, T)) acts simply transitively on the set B of all Borel subgroups that contain T.
We have a classification of all Borel subgroups in Br: For every system of positive roots

®*, we can construct the Borel subgroup
Bg+ := (T, U, (Va € 1)) € Br.

Conversely, every Borel subgroup B containing T is equal to (T, U,Va € %) € By. The

previous discussion summarizes as follows: the map B +— ®f is a bijection between
B <> the set of positive systems of roots in (Gg, T).

For a fixed Borel pair (B, T) we have the following decompositions:

e We have an isomorphism of split solvable algebraic groups [Mill7a, 21.34]
B, x T — B,

where B, is the unipotent subgroup of B.

e For every ordering {a; < --- < a,.} = ®(Gy, T), the multiplication map
U, x---xU,, — B,

is an equivariant isomorphism of k-algebraic varieties with a T-action.

THEOREM 11.1.10.1. All Borel pairs’ in G are G(k)-conjugate.

Proof. This is [Mil17a, 17.13]. O

9A Borel pair in G, is a pair (B, T) consisting of a Borel subgroup B and a maximal torus T contained
in it.
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I1.1.11 Classification in the absolute case

The root datum we attached to the split pair (Gy, T) determines completely the isomor-

phism class of Gy, in fact we have the more precise classification

THEOREM II.1.11.1. The map that associates the isomorphism class of G to the isomor-

phism class of its reduced root data R is a bijection:

e Uniqueness: let (G, T) and (G',T') be two split connected reductive pairs over k,
such that v: R(G,T) — R(G',T) is an isomorphism'". Then v is induced by an
isomorphism G — G’ of algebraic groups sending T to T, unique up to conjugation
by T(k) and T'(k).

e FEuzistence: let R = (X, ®, XV, ®Y) be an abstract root datum. Then there is a split

connected reductive pair (G, T) over k such that R ~ R(G, T).

Proof. The uniquness statement is [Mill7a, 23.25] and the existence assertion is [Mill7a,

23.55]. 0

REMARK 11.1.11.1. Fiz a split reductive group G over k. Let T and T’ be two different
mazximal split subtori of G. By [Mill7a, 17.105] we have that T and T are conjugate
by an element in G(k). Therefore the corresponding root data R(G,T) and R(G,T")
are actually isomorphic. Hence, by Theorem [1.1.11.1, the isomorphism class of G is

determined only by G and not the mazximal torus. This justifies the omission, from now

on, of the torus in the notation of the root datum R(QG).

I1.1.12 The connected Langlands group

For every abstract root datum R = (X, ®, XV, ®"), consider the abstract dual root datum
defined by R := (XY, ®", X, D).

DEFINITION [1.1.12.1. Let G be a reductive group defined over k. We define the complex
dual G of G (sometimes called the connected Langlands dual and denoted *G°) to be the

associated connected reductive algebraic group over C, whose root datum is dual to that of

10An isomorphism of root data (X, ®, XV, ®Y) — (Y, ¥, YV, ¥V) is a group isomorphism X — Y
sending ® to ¥ whose dual YV — XV sends ¥V to ®V.
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G, e
—_—

R(G) ~ R(G).
In the case of a torus T over k the complex dual is stmply

T = X*(T) ® C*.

A~ ~

Moreover, we have by definition the isomorphisms X,.(T) ~ X*(T) and X*(T) ~ X.(T).
We note also, that the Gal(k/k)-action on X*(T) gives T a structure of Gal(k/k)-module.

II.2 Structure of reductive groups: relative case

Now that we have sketched the absolute theory over k, we move to the relative theory

which deals with aspects over the base field k.

11.2.1  k-tori in G

A important example of k-tori of G is the connected center Z., this is the maximal central
torus of G | i.e. the largest torus in the center Zg. We give here a few properties of Z,.

which will be very useful in the following chapter.

THEOREM I1.2.1.1. 1. The center Zg is an algebraic k-group of multiplicative type

contained in all mazimal tori of G, and its identity connected component is

2. The multiplicative homomorphism Z. x GY" — G is a central isogeny (i.e. the kernel

is central).

Proof. See |Bor91, Propositions 11.21 & 14.2]. H

THEOREM 11.2.1.2. All mazimal k-split k-tori of G are G(k)-conjugate.

Proof. This can be found in [Bor91, Theorem 20.9). O
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I1.2.2 Relative root system

In this subsection, let S be a maximal k-split torus of G '' and let 89" be the maximal
k-split torus (SN G%*)Y  of G% 2. Assume S%" is not trivial or equivalently, S is not
central in G (this will be the case of all situations we are interested in). Pick a maximal

k-torus T D S (the existence of such a T follows from [Spr98, 13.3.6 (i)]).

Let @ := ®(G,S) C X*(S) denote the set of non-trivial S-weights of the adjoint action of
S on g, the Lie algebra of G. This set is called the set of relative roots of G with respect
to S. Therefore, the Lie algebra g of G decomposes into the direct sum

0=200% P 0o

acr®

where g, is the subspace of g on which S acts through the nontrivial character a.

REMARK 11.2.2.1. [Bor91, 21.1] The relative roots y® C X*(S) are trivial on the mazimal
k-split subtorus Z. s, of the maximal central k-torus Z.. Therefore, these roots can also be
seen as elements in X*(S%") or X*(S/ Z.,). Actually, the restriction X*(S) — X*(S%")

induces an isomorphism y® ~ ®(Sr Ger).
Let V = X*(8) @z Q and V' = X*(S%") 0, Q.

LEMMA 11.2.2.1. 1. The k-torus S*" is a mazimal split k-torus in G,
2. The natural map Zes, x S™ — S is an isogeny.

3. The previous isogeny induces an orthogonal decomposition
V=V'®(X*Z.s) @z Q).

4. Since the projection of 1@ on X*(Z.sp) @z Q is trivial, one can inject ;)@ in V' and
we have Q - , & = V",
Proof. See [Conl6, 11.3.3] O

We can deduce a similar statement to Proposition [1.1.8.1:

THEOREM I1.2.2.1. The roots ®(G%*", S¥") generate X*(S*")®7Q, i.e. V' = X*(S%*")®y
Q. The two pairs (,®, V") and (P(Gr, 8%r), X*(S%") @z Q) are isomorphic root systems.

HThis is unique up to G(k)-conjugacy by Thereom 11.2.1.1
12The group S N G can be disconnected or non-reduced, see [Con16, Example 11.3.4].



I1.2 Structure of reductive groups: relative case 33

Proof. The fact that (®(G%", S%"), X*(S%") @7 Q) is a root datum is [Bor91, Thm 21.6].

of root systems between the
(kq), V/) ~ ((I)(Gder7 Sder))x*(sder) Ry Q) .

As opposed to the absolute case, (,®,V’) can be non-reduced if S is not a maximal k-torus,
and the weight spaces g,, for a € ;®, are no longer always 1-dimensional. We define the

reduced root system

(Broq = {0 € 1B %a ¢ L0},
REMARK 11.2.2.2. Observe that
=0 G=2g(S)
< S C G central (e.g., S =1 when G is semisimple)
< G has no proper parabolic k-subgroups (see §11.2.0 for definition).

We will then assume from now on @ # ().

The Weyl group W (;®) of the root system (y®,V”’) is by definition the subgroup of

automorphisms of V' generated by the reflections s,: x — = — (x, ") :
W (@) = (sq : @ € ;) C GL(V') X GL(X™(Z.s,) ®z Q) C GL(V).

REMARK I1.2.2.3 (Positive and simple "relative" roots). All of the notions and results we
encountered in the "absolute" situation of §11.1.58.1 remain valid (modulo few adaptions) for
the root system (@, V). Similarly, define the set of hyperplanes (Hy)ae,», Weyl chambers
WC(;:®) := mo(VY \ UaeroHa), systems of positive roots {®F }eewope) [Boubs, VI - §1].

For every chamber C, let A¢ be the associated simple root system.

11.2.3 Relative root datum

By Theorem 11.2.2.1 for each a € ;,® there exists a cocharacter oV € X, (S%") verifying
some properties (listed in the proof of Proposition I1.1.8.1). We identify each o with an
element of X, (S) ®z Q under the decomposition

X.(S) @z Q = (X.(S*) ®2 Q) & (Xu(Ze,sp) ®z Q).

Therefore, we get an injection ;@ — X, (S) onto a subset of non-trivial elements which we

will denote ,PV.
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THEOREM I1.2.3.1. The quadruple ;R = R(G,S) = (X*(S), x®, X.(S),rP") is a root

datum.

Proof. This is [Spr98, 15.3.8| ]

We denote by W (;yR) the Weyl group of the root datum ,R. It is naturally identified with
the Weyl group W (;,®) of the associated root system ,® = ®(G, S).

I1.2.4 Relative Weyl group

Similarly to the absolute case, the quotient Ng(S)/Zg(S) is a finite étale k-group scheme.
Its group of k-points (Ng(S)/Za(S))(k) = Ng(S)(k)/Za(S)(k)" is called the relative
Weyl group W (G, S) and is canonically isomorphic to the Weyl group W (,®) of the root
system (V, ;@) [Bor91, Thm 21.2]:

W(GR) = W(®) —= W(G,S)(k).

I1.2.5 The relative root group U,

We define in this subsection the root group U, C G associated to each o € ®. Unlike the
split case obtained over k, this group may have rather large dimension, and can even be
non-commutative. The existence of these groups follows from a more general construction

that does not require G to be reductive:

THEOREM I1.2.5.1. Let H be a smooth connected affine k-group endowed with an action of
a k-split torus S. Let A C X*(S)\ {0} be a semigroup. There exists a unique, unipotent'’,
S-stable smooth connected k-subgroup Uy (H) whose Lie algebra

upy = Dacane@,S)fa-

Moreover, every S-stable smooth connected k-subgroup such that all S-weights on its Lie

algebra occurs in A will be contained in U,y.

Proof. This is [CGP15, Proposition 3.3.6]. O

13This equality follows using Hilbert Satz 90.
14This is ensured by the requirement 0 ¢ A.
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For any o € ® consider the following semigroup Z-qa C X*(S). By the previous
Theorem [1.2.5.1 let us associate to each a € ,® the group U, := Uyz_,o(G), It is a
smooth connected unipotent k-subgroup of G that is normalized by S and for which the
Lie algebra uz_, is the span of the weight spaces gg for 8 € Z-oa N ®. In addition, if
2a € 1P then we have Uy, C U,, this follows immediately from the theorem above which
ensures that U, contains every smooth connected k-subgroup normalized by S and for
which the S-weights on its Lie algebra are positive integral multiples of . The k-group U,

is called the relative root group of G associated to o € ,®. If there is no risk of confusion

with the root groups defined over k we will drop the adjective relative in this definition.

We present in the following proposition a few other properties of root groups (see [Bor9l,

§14.4]):
PRrROPOSITION 11.2.5.1.  a. The group Zg(S) normalizes U, for all a € P,
b. LiGF(Ua) = Yo —+ J2a5

c. Let U be a positively closed” subset of ,®. There exists a unique closed, connected,

unipotent k-subgroup Uy C G, that is normalized by Zg(S). The product morphism

I] Ua— Uy,

a€V,.qq

1s an isomorphism of k-varieties, where the product is taken in any order for V. In

particular, Liey(Uy) =) cy Ba-

Whenever a system of positive roots ,®* is fixed in ,® with base A C ,®,.4, we denote

the groups U, ¢+ (resp. U, ¢-) simply by U™ (resp. U™).

I1.2.6 Parabolic subgroups

An algebraic subgroup P of G is said to be parabolic if the quotient G /P is a complete

algebraic variety'’. Equivalently, a subgroup P is parabolic if and only if it contains a

15Being positively closed [Bor91, 14.7] (equivalently being special [Bor91, 14.5]) is defined as follows:
an arbitrary subset ¥ C ;® is called positively closed, if ¥ lies in an open half-space of X*(S) ®z Q (or
equivalently, belongs to a positive set of roots for some ordering of ®) and if for all a, 8 € ¥ we have

[a, B] := {na+mpB: for all n,m € Ziso} NP C V.
16This definition is equivalent to requiring the quotient G /P to be projective. Indeed, since we quotient

by a closed subgroup, the latter quotient is a quasi-projective variety, but complete and quasi-projective
implies projective, which shows the equivalence of the two definitions.
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Borel subgroup (a maximal connected solvable subgroup) [Bor91, §11.2]. A Levi factor of

P is a reductive subgroup M verifying

P=R,P)xM.

PROPOSITION 11.2.6.1. Let S be any k-split subtorus of G. Its centralizer Zg(S) is a

Levi subgroup of a parabolic k-subgroup of G.
Proof. A proof can be found in [Bor91, Proposition 20.4]. ]

Let ,®T be a system of positive roots in ,® with base A C 1 D,..q (see Remark 11.2.2.3).
Any subset J C A is a base for a root system ,®; := ZJ N . The subgroup
(Zc(S),U,s,u,0+) C G is a parabolic subgroup, we denote it by P, such a Parabolic
will be called semi-standard. We have R, (P ;) = quﬁ\k@j, where ;@ := Z.J N ®T. The
Levi factor M; of P is the subgroup generated by (Zg(S),U,s,). Actually, this Levi
subgroup is the centralizer of the split torus S; := Nye, o, ker . When J = () we get a
minimal parabolic subgroup Py with Levi factor Zg(S), confirming the above proposition.
If J=A, then P = Ma = G and S, is the unique maximal split torus of the center Zg.
We refer the reader to [Bor91, §21] for proofs of the results above.

PROPOSITION 11.2.6.2. All minimal parabolic k-subgroups are G(k)-conjugate.

Proof. This can be found in [Bor91, Theorem 20.9). O

REMARK I1.2.6.1. Using notations of Remark [1.2.2.3, we have the following identifica-

tions:
{ Minimal parabolic subgroups containing S}

!

{Systems of positive roots}

!

{ Weyl chambers in (,®,V)}. O

I1.2.7 Tits system

We first recall the definition of a Tits system, which we will be regularly using in chapter

[11. For more details we refer to [Bou68, §2 in Chapter IV].
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DEFINITION 11.2.7.1. A Tits system (or BN-pair) is a quadruple (G, B, N,S) composed
of an abstract group G, two subgroups B and N, and a subset S CW := N/(BN N) such

that the following four axioms are fulfilled:

e BN N is normal in N and BU N generates GG,

e The elements of S have order 2 and generate W,

e Foralls €S andw € W, sBw C BwB U BswB (using any representatives for s
and w in N ),

e sBsZ B for all s € S (this is equivalent to sBs # B, since s* is of order 2).

REMARK 11.2.7.1. The nomenclature BN-pair for G is justified by [Bou68, 1V-§2.5
Remark 1] which asserts that the set S is uniquely determined by the triplet (G, B, N).

A good part of the theory developed by Borel and Tits in [BT65, BT72] may be condensed
in the following fundamental theorem. Define for each a € ® the set M, of elements of

Ng(S)(k) whose image in the Weyl group ;W = Ng(S)(k)/Za(S)(k) is the reflection s,.

THEOREM 11.2.7.1. The datum (ZG(S)(k), (Ua(k>7Ma)ae<I>(G,S)> is a generating root
datum (donnée radicielle génératrice) of type @ in G(k) in the sense of Bruhat and Tits
[BT72, 6.1.1.].

The nomenclature "generating root datum" means that the above datum verifies the

following list of axioms:

(DR1) The obvious fact that Zg(S)(k) is a subgroup of G(k) and each U, (k) is a nontrivial
subgroup of G(k).

(DR1’) G(k) is generated by Zg(S)(k) and the U, (k)’s for all o € P.

(DR2) For every a,f € y® the group of commutators [U,(k), Ug(k)] is generated by
Upaiqs(k) for p,q € Z~g and pa + ¢f € 1.

(DR3) If @ and 2« are both in ,®, we then have Uy, (k) C U,(k).

(DR4) For a € @, M, is aright Zg(S)(k)-coset in G(k) and U_, (k)\{1} C Uy (k) M,U,(k).

(DR5) For a, 8 € ® and n € M,, we have

nUg(k)n™" = Us,(5) (k).
(DR6) Za(S)(MU* (k) U~ (k) = {1}.

THEOREM 11.2.7.2. Let P be a minimal parabolic k-subgroup of G containing S. Let A
be the base of the positive system of roots ;& = ®(P,S), and let S := {s, | € LA} be
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the associated set of simple positive reflections. The 4-tuple

15 a saturated Tits system with Weyl group W .

Proof. For the details see [BT72, Proposition 6.1.12] where P (k) is equal to Zg(S)(k) -
[loe, o+ Ualk) by [Bor9l, 14.18 & 21.11J. O
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I1.3 Bruhat—-Tits buildings theory

Bruhat and Tits made a profound exploration of reductive groups over local fields by
constructing for them a combinatorial avatar: let G be a reductive group over a F'; a finite
extension of Q, for some prime p. In their seminal work [BT72, BT84 they associate to
G = G*(F) an affine building B(G, F);eq, and to G a building B(G, F)ey. The first
one is called the reduced Bruhat—Tits building of G, the latter one is called the extended
Bruhat—Tits building of G. Here is a gentle mise-en-bouche: the building B(G, F),q is a
complete metric space, that has a structure of a poly-simplicial complex. The building
B(G, F),eq is obtained by "gluing" a family of distinguished subsets, called apartments.
These apartments are affine spaces for some fixed real vector space. This inner poly-
simplicial structure comes with an action of the group G, this latter acts isometrically by
polysimplcial automorphisms on B(G, F'),eq. In the present subsection we will be following
[Lan96],[Yu09], [SS97, §1.1] and [Vigl6, §3] to introduce the main ingredients needed in
the construction of the above buildings: the groups U, ,. The previous references played
the role of guide to the non-initiated (me) to explore the encyclopaedic and monumental

treatise [BT72, BT84] and helped extract a reasonably brief exposition.

I1.3.1 Notations

e [’ a finite extension of Q, for some prime p, Op its ring of integers, w a fixed
uniformizer in Op,

e w: F* — 7 the normalized discrete valuation, i.e. w(w) =1, and | - |p = ¢*0) for
the corresponding normalized absolute value,

e kp the residue field of F', and ¢ its cardinality,

o [P a fixed separable closure,

e For any connected reductive F-group H, there exists a homomorphism of groups

vy : H(F) — Homg(X*(H) g, Z) characterized by
(), x) = v (B)(x) = —w(x(R)), for all h € H(F) and y € X" (H).

e Fix G a connected reductive group over F', we use the convention that all reductive
groups are connected,

e Let Z. denote the maximal central F-torus, and Z. 5, its maximal F-split F-subtorus,
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e Let S be a maximal F-split subtorus of G,

e For any algebraic subgroup H C G, we will denote by Ng(H) and Zg(H) the
normalizer and the centralizer of H in G respectively,

e The root system of G with respect to S will be denoted ® := ®(G, S), T a system
of positive roots in ®, A the associated base of simple roots and the Weyl group
W =W(G,S)(F) = Ng(S)(F)/Zc(S)(F) (see §11.2.1),

e Set M := My '" = Zg(S) for the centralizer (a minimal Levi F-subgroup of G),
N := Ng(S) for the normalizer and P := Py for the minimal parabolic with Levi
factor M and unipotent radical U" = Ug+, we have P = Ug+ x M.

e We will sometimes use the notation L1 ® k = [, for a field k.

11.3.2 The standard apartment

LEMMA 11.3.2.1. We have the following commutative diagram

X*M)p x  X.(M)p — 7
X*(S) X X.(S) —— Z

where only the bottom line is a perfect pairing. In addition, the first vertical embedding

identifies canonically X*(M)g with a finite index subgroup of X*(S).

Proof. Any F-rational cocharacter in X, (M)p factors through S, since S is the unique'®
maximal F-split torus in M, therefore X,(M)r ~ X, (S)r hence by [Spr98, Proposition
13.2.2 (i)] we get

The product map 7: M x Z2, — M given on rational points by (z,y) + 2y~ induces

an isomorphism of algebraic groups

(MY x Zg,)/ kerm — M.

We may then identify the X*(M) with the characters of M x Zg, that are trivial on
kerm = {(x,2) : x € (M NZg)}. Now because ker 7 is finite, the group of characters
X*(M) identifies with a finite index subgroup of X*(M%" x Zg,) ~ X*(M*") @ X*(Z3,;) ~

1

see 11.2.6 for notation.
18Since all maximal F-split tori of M are M(F)-conjugate (Theorem 1.2.1.2), and M is the centralizer
of Sin G.
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X*(Z31)- The composition of the following maps
X*(M) = X* (MY xZyy)/ ker ) — X*(M xZ3;) = X*(Zy),

is the restriction map.

Recall that M is reductive (see Proposition 11.2.6.1 above), so Zy; is an F-torus and
it contains S. Let Z§f be the maximal F-anisotropic subtorus of Zy;, we then have
an isogeny S xZ3p — Zy; with SNZ{Y finite (see [1.1.2). Thus one can also identify
X*(Zy;) with a finite index subgroup of X*(S xZ§7) ~ X*(S) & X*(Z§1). Taking the
Gal(F*/F)-invariants, we get an injection X*(Z3;)r — X*(S)r & X*(Z37)r ~ X*(S)F,
where we have used [Spr98, Proposition 13.2.2 (ii)] for the last equality. Therefore, we
have an injection

X' M)p = X (Zy)r — X*(S)r ~ X*(S),

which canonically identifies X*(M)p with a subgroup of finite index in X*(S). O

In the following lemma we will see that, the injective finite-cokernel group homomorphism
X*(M)p — X*(S) induces a unique homomorphism M(F') — X,(S) ®z Q that extend
vy (defined in §11.3.1).

LEMMA 11.3.2.2. There exists a unique homomorphism vyr: M(F) — X,.(S) ®z Q such
that

(vn(2),xls) = —w(x(2)), for all z € M(F) and x € X*(M)p(— X*(8)).

Proof. Lemma 11.3.2.1 asserts that the restriction map X*(M)r — X*(S) is injective, and
has an image of finite index, i.e. for any y € X*(S), the character [X*(S) : X*(M)p]x €

X*(S) extends to a unique ¥ € X*(M)p. Consider the following map

1 -
X(S) X*<M>F]“(X(Z”> '

This is clearly a homomorphism of groups. Moreover X*(S) ®z Q and X.(S) ®z Q

M(F) = Hom(X*(S) 92 Q.Q), =+ (X o -

remain a dual pair of Q-modules for the canonical pairing (,)q'’ which extend the pairing
(,): Xu(S) x X*(S) — Z (§11.1.4). Thus, any homomorphism in Hom(X*(S) ®z Q, Q)
is of the form y ® r — (x, \)rr’ for some A @ " € X,(S) ®z Q. This defines a unique
homomorphism of groups vy : M(F) — X*(S) ®z Q verifying

(vm(2),x®1)g = — X (S) }*(M)F]w(%(z)) for all z € M(F) and y € X*(S),

9See [Bou59, chap. 1X, §1, Proposition 1].
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or equivalently (since X*(M)p generates X*(S) ®z Q)
(vm(2),x1s ® 1)g = —w(x(2)) forall z€ M(F) and x € X*(M)p. O

LEMMA 11.3.2.3. The subgroup M(F)! := ker vy is the maximal compact open subgroup

of M(F).
Proof. See |Lan96, Proposition 1.2]. n

In addition, M(F)! is a normal subgroup of N(F). Indeed, for any n € N(F) and
z € M'(F) one has”

(vpr(nzn™), X)q = (v (2),X)q =0, Vx € X*(M)p,
where, }' := (m — x(nmn~!)) € X*(M)r. We then have a short exact sequence of groups
0 — M(F)/M(F)" — N(F)/M(F)" — N(F)/M(F) — 0,
in which M(F)/ M(F)! is a free abelian group containing X,(S) and having same rank

[Lan96, Lemma 1.3|, and N(F)/ M(F) is the relative Weyl group.

Consider the R-vector space V = X.(S/Z.sy) ®z R. We identify its dual space V* and
X*(S/Z.sp) ®z R using the canonical extension pairing (,)r [Bou59, §1, Proposition 1.
We denote by

v: M(F) =V,

the composition of the map vy : M(F) — X.(S) ®z R (Lemma [1.3.2.2) and the natural
projection X,(S) ®z R — V. Recall that W = N(F')/ M(F) acts by conjugation on S,

this induces a faithful linear action on X, (S). This gives a canonical homomorphism
j: W — GL(X.(S) ®z R),

which induces a homomorphism of groups W — GL(V') since N(F) acts trivially on Z .

Let A be an arbitrary affine space under V*'. Using the above maps v and j we get the

20Recall that M(F) is a normal subgroup of N(F).

2lReminder: an affine space A under a vector space V, is a set A together with a simply transitive
action of the vector space V on it. We denote the action of any v € V on a € A by v + a, and refer to
the map a — v + a as a translation. An affine map f: A — A’ of an affine space A under V into an
affine space A’ under V' consists of a map f of the set A to A’, and a linear map d(f): V — V’ such that
flo+a)=d(f)(v)+ f(a) for all a € A and all v € V. The linear map d(f) is called the linear part of f.
The group of all invertible affine transformations of A, is called the affine group of A and will be denoted
Aff(A). We have a natural exact sequence

0—-V = Aff(A) - GL(V) — 1,
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following diagram

0 —— M(F)/M(F)! —— N(F)/M(F)! > W > 0
0 >V > Aff(A) —— GL(V) —— 0

Since Aff(A) ~ V x GL(V) |Bou62, §9, 1], putting together the actions of M(F)/ M(F)!
and W on A, one can construct a group homomorphism vy : N(F) — Aff(A) which makes
the above diagram commute, i.e. for all z € M(F'), vn(2) is the translation a — v(z) + a
(Va € A), and for any n € N(F) the linear part of vy(n) is equal to j(w(n)), where w(n)

denotes the image of n in W.

PROPOSITION 11.3.2.1. There is a canonical affine space A,oq(G, S) under' V' (unique up to
a unique isomorphism of affine spaces) together with a group homomorphism vy: N(F) —

Aff(ALeq(G,S)) extending v. Accordingly, we have a commutative diagram

0 — M(F)/M(F)! —— N(F)/M(F)* > W > 0
J/V J/VN J/j
0 > V > Aff(Aveq(G,S)) —— GL(V) —— 0
Proof. See the proof of [Lan96, Proposition 1.8| for the details. O

REMARK I1.3.2.1. All possible extensions of v are of the form
Unp(n): a—= —v+uvy(n)(v+a), Va € A (G, S),

for some fixed v € V.

We are now ready to define the central combinatorial object of this subsection

DEFINITION I1.3.2.1. The affine space Acq(G,S) together with the group homomorphism
vn: N(F) — Aff(Aea(G, S)) is called the standard apartment of G with respect to S.

I1.3.3 A discrete valuation of the generating root datum

One of the consequences of Theorem [1.2.7.1 is

where, the second map is the one sending a vector v to the translation a — v 4 a, and the third map is
the one sending a linear map f to its linear part d(f).
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PROPOSITION 11.3.3.1. For every a € ® and every u € Uy(F) \ {1} there exist a unique
pair (u',u") € U_o (k) \ {1} x U_,(k) \ {1} such that mq(u) := v'uu” verifies

Mo (W) Uqg(k)ma(u) ™ = U_q(k) and mq(u)U_qo(k)ma(u)™" = Ug(k).
In particular,
U_o(F)YuU_,(F) NN(F) = {mqy(u)}.
Moreover, mq(u) normalizes S and its image in W = N(F)/M(F) acts on V by the
reflexion s,”” defined by a as follows
Sa: V= Vv —a(v)a’ + v,

where, (by abuse of notation) o¥ denotes the image of the co-root in V. Thus, the set M,
defined above Theorem 11.2.7.1 is precisely the right coset mq(u) M(F).

Proof. See |BT72, §6.1.2]. O

Fix any point (origin) ag in A,.q(G,S). For all @ € ® and all u € U,(F) \ {1} we have”:
vy (ma(u))(a) = sa(a — ao) + v (ma(u))(as) = —a(a — ao)a” + a — ao + vy (ma(u))(ao)

The set of fixed points of vy (m4(u)) is an affine hyperplane in A,.q4(G, S) with direction
ker(s, —Idy). Let by, o be any element of this hyperplane, one has

N (ma(w))(ao) = a(bag.an — ao)a” + ao.
Therefore,
vn(ma(uw))(a) = sa(a — ao) + a(bag.au — o)’ + ao.
Now, by setting ¢% (u) := —(bsy au — @o) € R one can rewrite vy(mq(u)) as follows:
vn(ma(u))(a) = = (ala — a.) + g (u) o’ +a.
Accordingly, the element vy(m,(u)) acts then as a reflection at the hyperplane {a €

Avea(G,S): ala — ao) = —p2(u)} (See [BT72, Remark (b) 6.2.12]).

One of the fundamental results obtained by Bruhat and Tits is

THEOREM 11.3.3.1. The family p% = (¢%: Uy (F) = RU{00})acs is a discrete valuation
of the generating root datum (M(F), (U (F), My),cq) (see Theorem 11.2.7.1), meaning
that % has the following properties [BT72, 6.2.1 & 6.2.21]:

220r equivalently, the linear part of the affine action of mg (u) is sq.
Bsince vn(mqy(u)) is an affine map with linear part equal to the reflection s,, we have for all
a € Aeq(G, S), see footnote 21 on page 42.
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(V 0) For all o € O the image of @ contains at least 3 elements.

(V1) For allaw € ® and r € RU{oo}, the set Uss, := (%) 1([r,00]) is a compact open
subgroup of Uy (F) and Uys . = {1}.

(V 2) For alla € ® and all n € M, the function u — ¢, (u) — ¢% (nun=') is constant
on U_,(F)\ {1}.

(V 8) For any o, 8 € ® and r,r" € R such that 5 ¢ —R,«, the group of commutators
Uss Ugir'] lies in the group generated by the groups Upatqptpr+qr Where p,q € Zig
and pa+qf € .

(V 4) If both o and 2« belong to @, the restriction of 2% to Uss is equal to 52,

[0}

(V5) Letaw € @, u € Uy(F) and v',u”" € U_,(F); if u'uu” € M, then ¢, (u') = —p (u).
Proof. For a proof we refer the reader to [BT84, 5.1.23] and [BT72, 6.2.12 (b)]. O

For every v € V', the map a, — v + a, yields the map

QDCLO — v+ (pao = ¢v+ao — (902+a0: Ua(F> - RU {oo})u — QOaO (’U,) + Oé(?)))ae(b .

Two discrete valuations in Ao := {v + ¢®: v € V'} will be said equipollent. As noted by
[BT72, 6.2.6], the action of V on A« described above endow this latter with a structure
of an affine space under V', which we endow with the euclidean distance corresponding to

the scalar product given on V.

REMARK 11.3.3.1. Under the isomorphism of affine spaces A oo =~ A,eq(G, S), the action
of N on A,.q(G,S) described in Lemma 11.3.2.1 correspond to the following action of N
on A g :

N X Agao = Agao, 1,0+ %] = w(n)(v) + gDzzzxr(n)(ao),
where w(n) denotes the image of n € N in W.

DEFINITION 11.3.3.1. We will say that a discrete valuation p* € A e (for some a €

Avea(G,S)) is special if, for any o € Ppeq, one has 0 € T'y(a).

REMARK 11.3.3.2. By definition ¢* = (¢%: u+— —(bgau — a)), we see then that ¢* is
special if and only if for any o € Pyeq, there is a u € U(F) such that a = by ., this is
equivalent to say that a is fivzed by my(u), in which case we will say that a is a special

point of Aea(G,S).

REMARK 11.3.3.3. Here is a "pictural” equivalent definition for being special: Any vertex

of the apartment A,.q(G,S) is the intersection of at least dimg V' different reflection
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hyperplanes. A vertex is called special, if the set of reflection hyperplanes that contains it,

meets every parallelism class of reflection hyperplanes of A,eq(G,S). With this alternative

definition, one can see that in the following figure* "a” is special while "a'” is not.

]

LEMMA I1.3.3.1. There ewists a special discrete valuation in A jao.

Proof. This is [BT72, Corollaire 6.2.15]. O

By the above lemma we may and will assume from now on that a, is a special point. We
will also omit indicating a, in the notation of ¢, % and Ug3, for « € ®,r € R, i.e. we

will write ¢, ¢, and U,,. Set
Foi={pa(u): v e Ua(F)\ {1}},
I = {pa(u): u € Ug(F) \ {1} and ga(u) = sup pa(uUsza(F))} .
LEMMA 11.3.3.2. For all a« € ®, we have: 'y, =1_, and 'y, =T, U %FQQ, m particular
L, =T if2a ¢ O.
Proof. See |[BT72, 6.2.2]. O

PROPOSITION 11.3.3.2. For every a € ®,.q, there exists a positive integer n, such that
[y = n,'Z, satisfying the following properties: Nyo = No for every w € W = W(®), and

Noo € {%na,na} if a,2a € .

Proof. This follows from [SS97, Lemma 1.2.10] and [BT72, 6.2.23]. O

24Which depicts roughly the case where the initial root system is of type Cs.
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11.3.4 Affine roots

DEFINITION I1.3.4.1. Define for every a € ®.oq and every r € 'y, the affine mapping
a+r: Aea(G,S) = R given by a — a(a — a.) + 1. Let ®ug denote the set of all affine
roots {a+1: o € Ppeq,r € I} [BT72, 6.2.6].

For use in Chapter [1], we describe in the following lemma the action of N on root groups

Uq. for any affine root o + r.

LEMMA 11.3.4.1. Let n € N, with image w in W. We have for all a« € Peq and all
rel,:

nUa—l—rn_l = Uﬂa
where, f = w(a) + 1 —w(a)(vy(n)(as) — ao).

In particular, if n =m € M(F') then

1

mUa+Tm_ = Ua-i—r—(l/(m),oc)'

Proof. Let a+1 € ®., and n € N of image w in W. As suggested by the proof of [BT72,
6.2.10. (iii)], we have
ot = () 7 ([r, o))
=n{u € Uy(F): po(u) >r}n!
= {u € Uy(o)(F): pa(ntun) >r}
= {u € Uy()(F): (vn(9))uw(e)(u) = 7}
FS {u € Uiy (F): (w(0v) + ¢ oy (u) > 7}
= {u € Uy(e)(F): (™)) () 2 7}
FEE u € Ui (F): (v (1) (@) = o+ @ue) (1) = 7}
= {u € Uue) (F): ¢u(a) () + w(a)(vy(n)(as) — ac) >}
= UB

where, 8 = w(a) +r — w(a)(vn(n)(a,) — ao). O

In a similar way to the non-affine case, consider for each affine root a + r € ®,4 the affine
hyperplanes
Hoir = {0 € Aea(G,8): ala —a0) = —r}}.
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For any u, € ¢_'(r), one has
Ha—l—r = {(l S Ared<G7 S) ma(ur)(a) - a}'

These hyperplanes define a poly-simplicial structure on the standard apartment in the

following way:

DEFINITION 11.3.4.2. Define the equivalence relation on A.e.q(G,S) by a ~ b if for every
affine root B the sign of f(a) and B(b) is the same or are both equal to zero *°; the
equivalence classes are called the facets. A vertex is a point which is a facet, e.g. the point

ao. A facet with maximal dimension is called an alcove, it is also a connected component

Ared(GU S) \ Uﬁetbaﬁ HB

From now on, we fix an alcove a C A,.q(G,S) containing in its closure the special vertex

Qo.

DEFINITION 11.3.4.3. Let « € ® and r € T',. We say that o + r is a-positive (resp.
a-negative) if a(a — a.) +1 >0 (resp. < 0) for some a € a (then for all, since the sign
does not depend on the choice of a € a). Let ®}; (resp. @) denote the set of affine

a-positive (resp. negative) affine roots.

For any non-empty subset Q C A,.q(G,S) and o € ®, we define fo: & — RU {0},
fala) :=inf{r e Ty: (a+7)(Q) C R"}

Define also the subgroup Uq to be the group of G(F') generated by Uacd,.Ua+tfao(a)- Note
that for a € A;q(G,S) and a € @, the real f{3(c) depends only on the facet containing

a.

EXAMPLE 11.3.4.1. For Q = {a.}, we have fio,(a) =0 for all o € . Now, let us see
the case Q = a. We first have

a={a€ A(G,S):0<ala—a,) <n,' for all « € ®,q a-positive}.

Therefore, if a € ® is a-positive, then f,(a) = 0. If now a € Prq is a-negative, then —«
is a-positive, hence for all a € a we have 0 < —a(a — a,) < n_L.. The real f.(a) € Ty

«

being the smallest element such aa — a.) > —fa(c), we see that fo(a) =n=L. By Lemma

25Equivalently, a ~ b if for any affine hyperplane H, either a,b € H or they are in the same connected
component of A,.q(G,S) \ H.
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11.5.3.2, we have Ty = T'_,, this implies that n;' = n"\. In conclusion:

0 if a € @ is a-positive,

Jala) = B

n, if a € Proq 1S a-negative.

PROPOSITION 11.3.4.1. For any non-empty subset Q C A,oq(G,S), the groups defined

above have the following important properties:
1. For any n € N(F) we have nUgn™! = Uvny-q, so in particular No = {n €
N(F): v(n)-x =z for allx € Q} normalizes Ugq.
2. For any a € ®peq we have Ug NUqy = Usg g (a)-
3. The set Po := NqUqg = UqNq is a group. We have Po N N(F) = Ng:
For any decomposition into positive and negative roots ® = ®+ L1 ®~, we have

4. The following product map is an
Ha€<brequ>i UaJer(a) —— Ug N U(F)i = Ug

homeomorphism whatever ordering of the factors we take.

5. Ua = ULUS (Uqg NN(F)).
Proof. See [BT72, 6.2.10(iii),6.4.9 & 7.1.3]. 0

From now, we will adopt the following notation: when Q = {z} we will write [J, instead

of O,y for O € {f,U, N, P}.

I1.3.5 Affine Weyl groups

For every affine root = a+r € @uq, let sg € vy (N(F)) denote the orthogonal reflection

with respect to the hyperplane Hg:
sg: a— —(ala—a,) +1r)a’ +a, Va € Ared(G, S).
DEFINITION I1.3.5.1. We define the affine Weyl group Wag C vn(N(F)) to be the group

generated by the reflections sg for all B € ®uq. It is normal a subgroup of vn(N(F')) [BT72,
6.2.11].
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The set @' := {a € ®: I, # 0} is a root system that contains @, = {a € ¢: 2a & P}
[BT72, 6.2.22]. Define the root system X := {n,a: o € ®'} and consider the following
"échelonnage""

E={(a,n,a): a € '} C P x .
Set Yo = Upex(a + Z). The map
Qof = Uneo, (@ +T0) — Sags (a+71) —— na(a+71),

is bijective and respects positivity [Vigl6, (38)]. The group W = Wag(X) is the affine
Weyl group associated to ¥ [Bou68, VI §2.1 & §2.5 Proposition 8] and [BT72, 6.2.22].
Define A.¢ to be the subgroup of translations in W,g, we can then identify A.q with the
Z-module generated by the set ¥V of coroots [Bou68, VI §2.1|. The affine Weyl group Wg
acts simply transitively on the set of alcoves in A,.q(G, S) [Bou68, VI 2.1].

Let a be vertex in A,.q(G, S), we denote by ®%; the set of affine roots that vanish at a,
set Wi = (sp: € ®%) C Wag. The vertex a is special in the sense of Remark 11.3.3.2 if

and only if the composition of the following maps
st — Wag —— vn(N(F)) —— W,

is an isomorphism”’. Special vertices exists by [Bou68, V §3.10 Proposition 10]. We have
by [BT72, 1.3 & 6.2.19] a decomposition for the affine Weyl group

for any fixed special vertex a € A,q(G,S).

DEFINITION 11.3.5.2. A face of the alcove a is a facet contained in a single affine
hyperplane. A wall of the alcove a is a hyperplane containing a face of a. For every

facet F C a we define its type to be the set
Tr={sy: H a wall of a, F C H}.
Let W be the group generated by Tr. Then (W, TF) is a finite Coxeter system.
Since a facet of F is the image by an element of W,g of a unique facet of a, and a facet F of a

is determined by its type, one can then define the type for all facets [BT72, 1.3.5]. So alcoves
have empty types (7, = 0) and special points have full type (7,, = {ss: 8 € ®lg} ~ & ).

26in the sense of [BT72, 1.4.1].
27This is equivalent to Wiy ~ W or just to #W7i; = #W since the induced map Wiz — Wag — W is
always injective.
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11.3.6 The reduced Bruhat—Tits building

We arrive now at the most important object of this subsection, that is the reduced

Bruhat—Tits building:

DEFINITION I1.3.6.1. Define the set
B(G, F)red = G(F) X Ared(G, S)/ ~,
where ~ is the equivalence relation on G(F) X Aeq(G,S) defined by

(g,2) ~ (h,y) if 3n € N(F) such that nx =y and g~ 'hn € U,.

The group G(F) acts on B(G, F),eq on the left:
g-[(h,y)] == [(gh,y)] for g€ G(F) and (h,y) € G(F) X Aa(G,S).

Moreover, the map A,.q(G,S) = B(G, F)eq given by z +— [(1, )] is an N(F')-equivariant
embedding. We will denote its image by A. We have g- A = A (resp. g-z =z, Vr € A)
if and only if g € N(F') (resp. g € ker vy, which contains the maximal compact subgroup
M(F)! of M(F) and the center of G(F').) [BT72, 7.4.10].

DEFINITION I1.3.6.2. An apartment of the building B(G, F),eq s a subset of the form
gA for some g € G(F). A facet (resp. alcove) of B(G, F)eq is a subset of the form gF
for some g € G(F') and a facet (resp. alcove) F C A.

Thanks to Theorem [1.2.1.2, apartments of B(G, F'),cq are in bijection with maximal split

tori of G.

PROPOSITION 11.3.6.1. In this proposition, we will collect some important properties
regarding the building B(G, F')req:

1. (Fizators) Let Q C A. We have an alternative characterization for the subgroups
Po = NqUq (defined in Proposition 11.5./.1 - 3):

Po={9g€G(F): gr=x VzeQ},

in other words Pq is the subgroup that fizes every point of Q [BT72, 7.4.4]. The
fixator Pq is the semidirect product [BT72, 4.1.1, 6.4.2, 7.1.3] :

Po = Uq x kerv.
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2. For any g € G(F) we can find a n € N(F) verifying gr = nz for all x in the closed
subset AN g YA [BT72, 7.4.8].

3. (Transitivity) Let Q C A. The group Uq acts transitively on the set of all apartments
containing Q [BT72, 7.4.9].

4. For any two facets in the building, there exists an apartment that contains both of

them [BT72, 7.4.18].

5. Let us fix an W-invariant euclidean metric d on A. The previous properties en-
sure that the distance d extends uniquely to a G(F)-invariant metric on the set

(B(G7 F)reda d)

REMARK 11.3.6.1. The term "fizators" refers to pointwise stabilizers, in contrast the term

"stabilizers" will be used for setwise stabilizers. ]

DEFINITION 11.3.6.3. The reduced Bruhat-Tits building of G(F') is the pair (B(G, F');ed, d)
together with its isometric G(F)-action and the poly-simplicial structure defined by its

facets.

11.3.7 The extended Bruhat—Tits building

When the center Z(G) has split rank > 0, the stabilizer P, of a point x € A C B(G, F')eq
is no longer a compact subgroup of G(F'). To remedy this issue we define in this section a

larger building following [BT84, 4.2.16].
We have a decomposition

X.(8) ®z R = (X.(S"") @z R) ® X.(Z.) ®z R),

where S = (G N S)°. This is the "dual" statement of the decomposition (3) in Lemma
11.2.2.1. This decomposition allows us to inject ®¥ in V¥ and again the "dual" statement

of (4) in Lemma [1.2.2.1 together with Theorem 11.2.2.1 says that
V = spang (®Y) = X, (S™") @z R.

Hence,

X.(S)®zR =V & (X.(Zesy) @z R).
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This allows us to see the apartment A C B(G, F')eq corresponding to S as a torsor for the

real vector space

X.(S) ®z R/ X.(Zcp) @z R.

Let us construct a homomorphism vg: G(F) — X.(Z.s,) ®z Q: Using the isogeny
Z.xGY¥ — G, we see that X*(G)r = X*(G/G%) . Since the quotient map Z, —
G/G9" is an F-isogeny of F-tori, we see that X*(G/G9%") identifies with a subgroup of

X*(Z.)F of finite index. Therefore, we have a natural isomorphism of Q-vector spaces
X*(G/Gder)p KRy Q — X*(ZC)F Xz Q

Let Z3" be the maximal F-anisotropic subtorus of Z., we then have an isogeny Z. 5, x Zg" —
Z. with Z. 4, NZ." finite (see [1.1.2). Thus, one has again an injection from X*(Z.)r into
X*(Ze,sp)r = X*(Zc,sp) that identifies the former group with a finite index subgroup of the
latter. We then have a natural isomoprhism of Q-vector spaces between X*(Z.)r ®z Q
and X*(Z.sp) ®z Q. Identify the Q-linear dual Homz(X*(Z.sp), Q) of X*(Z,sp) Rz Q

with X,(Z.s,) ®z Q. In conclusion, we get a natural isomorphism
X (G)r®zQ ~X"(Z.s) ®z Q.
Consequently, we obtain a canonical isomorphism
Xi(Ze,sp) ®z Q = Homz (X" (G)r ®z Q, Q).
This shows that there exists a unique homomorphism
G(F) = Xi(Zcsp) ®2 Q,

extending vg: G(F) — Homgz(X*(G)p,Z) (§11.3.1); this is the unique homomorphism

denoted by abuse of notation v and satisfying”® (see proof of Lemma [1.3.2.2)

(va(9): X|z..o,) = —w(x(9)), for all x € X*(G)F and g € G(F).

Put G(F)! := kervg”’. Then G(F)/G(F)! is a finitely generated abelian group, and
there is an isomorphism
G(F)/G(F)' ©z Q =~ Xi(Zcp) @2 Q.

Set Vo = X.(Z.sy) ®z R, and let A be a fixed affine space under V. We have a
morphism vg: G(F) — Aff(Ag) sending every g to the translation (a — vg(g) + a).

We define the extended standard apartment A (G, S) to be the product of A (G, S),eq x A

Z8We abuse notation, and denote also by (,) the pairing X, (Z. sp) X X*(Z¢.sp) — Z.
29We refer the reader to §11.3.9.2 for more on the homomorphism vg



54 CHAPTER II. PRELIMINARIES

together with the group homomorphism
UNext: N(F) —— Aff(A (G, S)), n —— vy(n) ® vg(n).

The decomposition X,(S) ®z R =V & Vi; shows that the extended standard apartment
At (G, S) (as defined above) is actually an affine space under X.(S) ®z R, and the
restriction of vy et to M(F') corresponds precisely to the translation action given by the

homomorphism v,; of Lemma [1.3.2.2.

REMARK 11.3.7.1. While the reduced system (A(G, S);eqa, Vn) 1S canonical, that is, unique
up to unique isomorphism (Proposition 11.3.2.1), the extended system (Aext(G,S), VN ext)
is only unique up to isomorphism. We "canonify” it (following G. Rousseau) by viewing

(which we will adopt from now on) Ag as Vi with a marked origin {0}.

DEFINITION I1.3.7.1. The extended building is the following product of a poly-simplicial

complex and a real vector space
B(G, F)ext = B(G, F)red X Vg.
The group G(F) acts isometrically on it as follows:

g (z,v)=(g9-z,v+vs(g9)) Vg€ G(F),z € B(G,F)wa,v € V.

A facet (resp. alcove, Weyl chamber, apartment) of B(G, F')ey is defined to be a product
of a same object in B(G, F'),eq and V. For instance let us fix the extended apartment
Aext = A x V. We identify B(G, F'),eq with the subset B(G, F)yeq X {0} in B(G, F)ey.
Then, the stabilizer of B(G, F')yeq for the action of G(F) in the extended building is exactly
ker vg. In this building the minimal dimensional facets are of the form F, := {x} x Vi for
some vertex x € B(G, F')yeq. The stabilizer of (z,0) is equal to P, Nker vg, where P, is

the subgroup defined in §11.3.3.

I1.3.8 The extended affine Weyl group

We define the extended affine Weyl group of S to be vy ext(N(F)) C Aff(Aet(G,S)),

hence

—~

Wag =~ N(F)/ker vy oy = N(F)/(kervy N G(F)') = N(F)/ M(F)".
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There are two important decompositions for Wag. If a € Akt (G, S) is special then using

the exact sequence (§11.3.2)
0= M(F)/ M(F)' = Wag — W — 0,

one obtains the following isomorphism

~ a
Waﬂ — AM Do affy

where, Ay, = M(F)/ M(F)' ~ vy ext(M(F)), with this decomposition one can view Wag

as a group of affine-linear transformations on A (G, S) marked with a as the "origin".

Consider the subgroup €, C Waff that fixes a x {0} € Ao (G, S). Taking Fr-fixed points
of the external semidirect product given in [HR08, Lemma 14| (relative to the alcove a)

yields the following external semidirect product

Waff ~ Waﬁ‘ X Qa.

11.3.9 Parahoric subgroups

11.3.9.1 Further notations

Let F"" denote the maximal unramified extension of F' contained in F*°’, and L the
completion of F*" with respect to the valuation on F"" which extends the normalized
valuation on F. The residue field of F' is perfect, thus F** = F*" is the strict henselization
of F' in the fixed separable closure F*P. Let L*®? a separable closure of L containing F*°P.
The arithmetic Frobenius automorphism o € Gal(F“"/F)" extends continuously to an
automorphism of L over F, also denoted o. Write In = Gal(F*??/F"") for the inertia
subgroup of Gal(F*?/F). Since L**? = L @ pun F*P  one can identify the inertia subgroup
In with Gal(L*®?/L).

11.3.9.2 The Kottwitz homomorphism

Let H be any connected reductive F'-group, H be its connected Langlands dual (§11.1.12)
and Z(ﬁ) be the center of H.

30Which induces x — x? on the residue field of F“".
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Kottwitz defines in [Kot97, §7.7] a functorial surjective homomorphism

ks H(L) = X*(Z(H)™) = X*(Z(H))n,

A~

where, the subscript In indicates coinvariants of the Gal(F#*”/F)-module X*(Z(H)), this
latter is the Borovoi fundamental algebraic group (usually denoted 71 (H)) and it is isomor-
phic to the quotient X, (T) for a maximal F-torus T by the coroots lattice. The group 1 (H)
acquires an action of Gal(F*®/F) via its representation as X.(T)/>_,com poer 1) L.

There is a canonical surjective homomorphism
qu: X*(Z(H))1, — Homg(X*(H)™, Z)

whose kernel is the torsion subgroup of X*(Z(H)), [Kot97, 7.4.4]*". Kottwitz shows
in |[Kot97, §7.4] that the above two homomorphisms sit in the following commutative
diagram:

~

H(L) KH » X*(Z(H))m

N

Homz(X*(H)™™, Z)
where, vg: H(F) — Homg(X*(H)™, Z) is the natural homomorphism characterized by
(va(h),x) = va(h)(x) = —w(x(h)), for all h € H(L) and y € X*(H)™.
Therefore, ker kg C ker vy, and

(X*(Z(ﬁ))1n> = kervg/ ker ky.

tors
REMARK 11.3.9.1. Note here that our vy differs in a sign from the map vy in [Kot97,

7.4.3].

Since our conneced reductive group H is defined over F', the restriction of kg to H(F)

provides a surjective homomorphism xp that sits in the following commutative diagram

31The codomain of (7.4.4) in loc. cit. is actually Homgz (X, (Z(H))™, 7)), so one needs to use the
isomorphism X, (Z(H)) ~ X*(H).
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(see [Kot97, §7.7| for the surjectivity of kp, see also [Rosl5, §2.7])

H(F) w » (X*(Z(H))m) @

N

—VyH q9H

~, |

HomZ(X*(H)F, Z)
We denote by H(L); (respectively H(L)!, H(F); = H(F) Nker kg and H(F)') the kernel
of kg (respectively vm, kg and vy). Therefore, [HV15, §3.2, Lemmal],
H(F)' = H(L)' N H(F) = {h € H(F): ru(h) € (X" (Z(H)F,) |-
Set Ay := H(F)/H(F);, thus

H(F)! /H(F), = (Ao = (X" (Z(H))7,) .

I1.3.9.3 Descente and passage to completion

Consider the extended building B(G, F'*") ey, of the group Gpun = G x p F*". This building
is equipped with an action of G(F"") x (o). Moreover, there is a natural G(F')-equivariant

embedding ¢: B(G, F)ext < B(G, F"")ext such that [BT84, 5.1.25]

UB(G, Fext) = B(G, F*")Z

ext”

In other words, the extended building of G over F' is identified with the fixed points of
o € Gal(F*"/F) (in particular of o) in the building of G over F"".

Since F™" is henselian, Rousseau has shown in [Rou77, proposition 2.3.9] that G has the
same relative rank over F*" and over L, and hence by [Rou77, proposition 2.3.9] the
building B(G, F"").y identifies canonically with B(G, L)ey as G(EF"")-space. Using this
identification, we see that the extended building of G over F', can also be identified with

the fixed points of ¢ € Aut(L/F') in the building of G over L, i.e.

L<B(G7 F)ext) = B(G, L)a

ext*

This gives a bijection between the set of o-stable facets in B(G, L)ex and the set of facets

in B(G, F')ext. For more details one can consult [Pral7].
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11.3.9.4 F-Parahoric subgroups

In [BT84, 4.6.28, 5.2.6], Bruhat and Tits associated two subgroups to any non-empty

o-stable bounded set Q) which is contained in an appartement of B(G, F"")ey:

1. The fixator subgroup
P(F'™)q :={9g€ G(F"): g-a=a,Va € Q} C G(F").

They also showed in loc. cit., the existence of a smooth affine group scheme Pq over

Spec O with generic fiber G, and which is uniquely characterized by the property
Po(Opun) = P(F"")q.
2. The parahoric subgroup ("connected fixator")
P(F*")g :=P4{(Opun) C P(F*")q,

where P?, is the identity component of Pg,.

A F-parahoric subgroup of G is by definition [BT84, under 5.2.6] the "connected fixator"
of a facet F C t(B(G, F)ext)-

LEMMA 11.3.9.1. Two facets F,F' C o(B(G, F)ext) are equal if and only if

P(F"™)% N G(F) = P(F*™)% N G(F).

Proof. See |[BT84, 5.2.8|. O

This lemma justifies (by misuse of language) the following definition:

DEFINITION 11.3.9.1. A parahoric subgroup of G(F') is the intersection
K7 = P(F")% N G(F),

for some facet F C o(B(G, F)ext). When the facet F is an alcove, the parahoric subgroup

Kz is called an Twahori subgroup and will be denoted I instead.

PROPOSITION 11.3.9.1. We have P(F*")% = P(F"")r N G(F"");.

Proof. See [HR08, Proposition 3, remarks 3 and 11]. ]
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REMARK 11.3.9.2. As pointed out in [HR0S, Remark 4/, Proposition 11.3.9.1 remains
valid if we replace F by any bounded subset O CC o(B(G, F)ext) which is contained in an

apartment.

This proposition induces another characterization of parahoric subgroups of G(F):

COROLLARY 11.3.9.1. Parahoric subgroups of G(F) are fizators of facets in the kernel of
the Kottwitz homomorphism, i.e. for any facet F C B(G, F)ex we have Ky = Px(F) N
G(F);.

Proof. The corollary follows from the following equalities:
Kr=P(F""):NG(F)
=P(F'"")rNG(F""); N G(F) (Proposition [1.3.9.1)
= P(F"")rNG(F)
=Pr(F*") N G(F),
=Px(F)NG(F);. O

REMARK 11.3.9.3. All parahoric subgroups of G(F') generates G(F); [HROS, Lemma 17].

The map that associates to a facet F its parahoric subgroup K is decreasing, in particular,
if F is any facet lying in the closure™ of the alcove a x Vg C B(G, F)ey then we have
Iixv, C Kx. In addition, the action of an element g € G(F') on a facet F translates for

parahorics to K,.r = gKrg™".

LEMMA 11.3.9.2. The subgroup M(F); := ker ky; is the unique parahoric of M(F), and it
is a finite index subgroup of M(F)! = ker vy (The mazimal compact subgroup of M(F)).

In addition, for any facet F in Ay the apartment corresponding to S, we have

M(F)N Kz = M(F),.

Proof. See [HR10, Lemmas 4.1.1, 4.2.1]. O

By [BT84, §5.2.4], we get another characterization of parahoric subgroups:

PROPOSITION 11.3.9.2. The parahoric subgroup of G(F') associated to a facet F C Aext
is equal to the subgroup generated by M(F); and Uz, more precisely it has the following

32The closure of an alcove consists of points lying in it and in all its faces.
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decomposition
Kr=UrM(F); =UfUzULM(F); = UfUZ(N(F)N KF).
such that the factors commute in the right factorization and the product maps
[Toco, nos Uarsr@) —— Uz = UrNU(F)* = KxrNU(F)*.
homeomorphism whatever ordering of the factors we take.
REMARK 11.3.9.4. As observed by Haines [Hai09, §6], the reference [BTS/], §5.2.4] con-

tains a typographical error. All of the "hats" in the four displayed equations in loc. cit.

should be removed.

REMARK [1.3.9.5. Let Q C Aey be any bounded subset containing a facet F, and set Kq
for its G(F):-fixator. By Remark 11.5.9.2 it is precisely the Op-points of the "connected
fizator" Py introduced in §11.5.9./, as such we also have Ko = P(F"™)yNG(F);. Applying
[BTS8], §5.2.4] we have

Ko=UaM(F), =UiU;US M(F); = U U; (N(F)N Kq).

Accordingly,

Lem.11.3.9.2

M(F), ¢ Ko N M(F) € Kx N M(F) M(F),.

Therefore, M(F); = Kq N M(F).
Since there is a one-to-one correspondence between systems of positive roots for ®(G, S)

and vectorial chambers in A (G, S) with apex a, (see Remark 11.2.6.1), we may and will

refine our choice of a to be the unique alcove with apex a, such that the set
{a € ®: « is a-positive},
equals to the fixed system of positive roots ®7.

LEMMA 11.3.9.3. We have
N(F) N Loy, = M(F);.

Proof. Let n € N(F) N Iyxy, C N(F)N K, «v,. But a. being special implies that the

canonical injection
N(F) ﬂ K(IQXVG/M(F) m KaoXVG —> W

is an isomorphism [BT72, §4.4.2]. But Lemma [1.3.9.2 asserts that M(F) N K, xv, =

M(F');. Fixing a in the reduced appartement A,.q shows that the vectorial part of vy (n)
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is trivial, thus n acts on A,.q as a rotation:
vn(n)(a) =wn)(a — a,) + a0, Va € Apeq.

By assumption vy (n)(a) = a for any a € a, which means that w(n)(a — a.) = a — a, for

all a € @, in particular for all a € vert(a) = {vertices of a}. But the set

{a —a,: a € vert(a) \ {a.}}

forms a basis for V' and hence w(n) is the identity on V. Accordingly,

Lem. 11.3.9.2

N(F) N Loy, C M(F)y = M(F) N Iaxv, C N(F) N Ly, O

COROLLARY 11.3.9.2 (Iwahori factorizations). The ITwahori subgroup I,xv, admits the

following decomposition

e
laxve = UaXVG

M(F),U_,

ax Vg

:U_

ax Vg

M(F), U

axVgo

such that the factors commute and the product maps

H Ua+0 — U:;VG = IaXVG N U(F)+

a€DPTNP g

and

H Upinot = Upv, = Taxvg NU(F) 7,

aE@*ﬁ(IDmd

are homeomorphisms.

We also have a quiet similar decomposition for the special mazximal parahoric subgroup

associated to the minimal facet {ao} x Vig:

U+

Kiagyxve = U {ao}x Ve

(atxve Ul

{ac}xVe M(F)l

=U

— +
{ao}XVG U{(lo}XVG

U

{_flo}XVG

M(F)y,
and the product maps:

[T Uaso = Upyurs = Kiapxvs NU(F).

a€®PEND, g

are homeomorphisms.

Recall that n, is the positive integer defined in Proposition 11.3.3.2 and U,y, = {u €
Uu(F): po(u) >} for a € &1 € R.

Proof. The first equalities of the two Iwahori factorization, namely

K{GO}XVG = U+ U{_ao}XVG U{—ZO}XVG

{ao}x Vg

M(F)l and IaXVG == U+

ax Vg

M(F), U

ax Vg
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follows from Proposition [1.3.9.2 and Lemma [1.3.9.3. Using the opposite root system &~
instead of ®T, one gets the other two equalities. Finally, to prove that the product maps
are homeomorphisms, we need (1) of Proposition [1.3.4.1 together with Example [1.3.4.1

for the values of f,(a) for all & € ®yeq. O
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In this chapter, we define the ring of U-operators and prove their integrality over the

spherical Hecke algebra.

The central tool we use for defining and studying these operators, is the universal unramified
principal series right H;(Z)-module M;(Z) (§111.8). We will be studying M (Z) following
the exposition of [HKP10|, which treats the case of a split reductive group. Therefore, we
will have to first reformulate and then establish these properties in our situation where the
group is no longer required to split over F'. We end the chapter by relating the U-operators
to the Hecke polynomial defined by Blasius and Rogawski [BR94, §6|, a polynomial that
was introduced in order to generalize the classical Eichler—Shimura relation for modular
curves by conjecturing that it annihilates the Frobenius correspondence acting on the

(-adic étale cohomology. We will show that this Hecke polynomial has also a root in U.

Notations

In addition to the notation adopted in Chapter [1.3, we also introduce the following, that
we hope will lighten a bit the exposition: For any algebraic F-groups H (bold style),
H = H(F) will denote its F-points. Let K be the special maximal parahoric subgroup
Kiaoxvey (811.3.9.4) associated to the minimal dimensional facet a, x Vo C A (G, S),
where a, is the special vertex introduced below corollary [1.3.3.1 in §I1.3.5. Let I = I xy
be the Iwahori subgroup corresponding to the alcove a x Vg C Ao (G, S) fixed before

corollary 11.3.9.2.

III.1 A Tits system

Define'
S(a) = {sq: @ € ®,q and H, is a wall of a}.

By [Vigl6, §3.9] the action of Ny := N NGy on Aeq(G, S) identifies Weg with Ny /M; and
S(a) C W, with a subset S C Ny /M;.

A good part of the following two sections relies heavily on the following theorem of Bruhat

'Recall that a wall of a is a hyperplane H containing a face of a (§11.3.5).
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and Tits [BT72, Proposition 5.2.12 (i)]:
THEOREM I11.1.0.1. The quadruple (Gy, 1, Ny, S) is a Tits system (see Definition 11.2.7.1).

In particular, the pair (N;/M;,S) (or equivalently (W,g, S(a))) is a Coxeter system [Bou68,
§3], in addition to the following properties:

T1) The subgroup G is generated by I and Ny,

T3
T4) For all s € S, we have sIs € I.

(T1)

(T2) the elements of S have order 2 and generate N; /My,
(T3) For all s € S,w € Ny/Mj, we have slw C Twl U Iswl,
(T4)

II1.2 Iwahori—Weyl group

Define the Iwahori-Weyl group for G as
W := N/M;.

Let us recall the Bruhat decompositions for G:

PROPOSITION II1.2.0.1 (Bruhat decompositions for G). Let B = MU™" be the minimal

parabolic subgroup of G with Levi factor M, and unipotent radical UT. We have
G=BNB=1INI.
Moreover, the maps n — BnB and n +— Inl induces the following bijections

W ~ B\G/B and W ~ I\G/I.
Proof. We refer to [HR08, Remark 9| and [Vigl6, Proposition 3.35]. O

We now present two semidirect product decompositions of the Iwahori—-Weyl group similar
to the one for the extended Weyl group in §11.3.8. These decompositions will be useful for

expression presentations of the Iwahori-Hecke algebra. Here is the first one:

LEMMA I11.2.0.1. The Weyl-Twahori subgroup has a natural structure of a quasi-Coxeter
group”

WﬁWaHNQZWaHNAG7

2that is a semi-direct product of a Coxeter group with an abelian group.
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where, Wog ~ N1 /My denotes the affine Weyl group of @.q, Q C W is the subset consisting
of stabilizers of the alcove a and Ag = G/G1(~ X*(Z(ar))‘}n see §11.5.0.2).

Proof. The previous decomposition can be deduced from [HR08, Lemma 14| by taking
the o-fixed points. For a more comprehensive proof we refer to [Vigl6, §3.9], where Ag
must be identified with @ = N /N7 (see Proposition3.36 in loc. cit, where Q) is denoted by
Q). O

REMARK II1.2.0.1. Since K is a special subgroup of G, the canonical injection

NANK/MANK —— W

is an isomorphism [BT72, §4.4.2]. Therefore, from now on, we may and will assume that
every representative in N of an element w € W = N/M lies in K, such a representative

is determined up to multiplication by My = M N K (Lemma 11.5.9.2).

LEMMA I11.2.0.2 (Bernstein). The Iwahori—Weyl group W admits the following decompo-
sitton

W:AMNW,

where, as in the notation introduced in §11.5.9.2, Ayy = M /M.

Proof. We have an exact short sequence
1 —— M/M; —— N/M; % N/M —— 1.

Using the canonical isomorphism W ~ N N K/M N K (Remark [11.2.0.1), one gets a
homomorphism " : W — N/M, , such that my o " = Idy. Hence, the above short

exact sequence splits:

W =M/Myx NONK/M; ~ Ay xW. O

II1.3 Double cosets

Denote by £: Wag ~ N;/M; — NN the length function of the Coxeter system (W,g, S(a))*(Recall
that (Wag, S(a)) and (N;/M;,S) are isomorphic Coxeter systems). Inflate the map ¢ to a

3Recall that if (W, S) is a Coxeter system, a reduced word for an element w € W is a minimal length
expression of w as a product of elements of S, the length ¢(w) is the length of a reduced word.
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length function W~ Wag X QO — N, for which QcWis exactly the subset of elements of

length equal to 0*:
U(w) = U(w,g) if w = wagu wWith wag € Wag, u € Q.

Furthermore, we consider the Chevalley-Bruhat (partial) order” on Wog ~ N;/M;. Now
extend the Chevalley-Bruhat order to the Iwahori-Weyl group W as follows: we say

(w1, A1) < (wg, Ag) € W~ Wag X Ag if and only if wy < wy in Wog and A\ = Ay in Ag.

LEMMA II1.3.0.1. For every w € W and s € S we have’

Iswl, if w < sw,
Islwl =

Twl'UIlswl, if sw < w.

Proof. We will use [Bou68, Ch. TV §2, Exercice 8, page 48|. Recall that G} (being the
kernel of k) is normal in G. Let us verify that for every g € G, there exists h € G such
that hIh™t = gIg~" and hN1h™ = gN1g~*. Let Ny, be the G-stabilizer of the alcove g - a,
this is also the G-normalizer of /. By [Vigl6, Proposition 3.36 (2)], we have G = G1 Ny,
hence g = hn for some n € Ny, and h € Gy and g-a=h-aie. glg~' = hIh™t. By loc.
cit. Ny normalizes Ny and so gN1g~' = hnNin~'h™! = hN;h~!. Recall that by Theorem
[11.1.0.1, the quadruplet (G, 1, N1, S) is a Tits system, therefore by [Bou68, Ch. IV §2
Exercice 8, (c) and (d)] (taking G for G and G for G) we deduce that
Islwl C Twl U Iswl,

for s € S and w € W. From this one can deduce (see [Bou68, Ch. VI §2, Exercice 11 (d),
page 49]):

Iswl, ifw<sw ({(sw)=/Lw)+1),

LeTwl — ((sw) = £(w) +1) -
IwlUIlswl, ifsw<w {l(sw)=~Llw)—1).

REMARK I11.3.0.1. The first equality in the lemma above can be easily generalized: for

any w,w" € w

Twiw'l = Tww'l, if Llww')=Llw)+ (). O

4Equivalently, the length of an element in w € W is the number of walls between the fixed alcove a
and the alcove w(a).

SLet (W, S) be a Coxeter system and define a partial order on W as follows: Fix a reduced word
w = $182...5k. We say v < w if and only if there is a reduced subword s;,s;, ... si; = v such that
1§i1<’i2<"'<ij§k‘.

6Strict inequality w; < wy simply means wy < wy and wy # ws.
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Let us end this section with the following corollary (Given in [HR10, 10.2.3| without proof),

it will be needed for the proof of Lemma [11.8.0.3.

COROLLARY I11.3.0.1. Let z,y € W then

Ielyl | | Iz=I.

z<y

Proof. The corollary will follow using Lemma [11.3.0.1 by induction on the size of a minimal

word for y. Let y = s; € S, we have

lxsq1, if v < xsy,
Izlsi] =

Ixl UlxsI, ifxzs; <.

So it suffices to take z € {y} if v < xs; and z € {s1y,y} f vs; <z. Lety=51---5, a

reduced word for y. Put v/ = [[,_, s;, we then have

Ialyl = Ixls;y'T ™2 [als Iy'1

TxsIy'l, if v < xsq,

Iely' I Ulxs Iy'l, ifxs; <z

)
|_|Z§y, Irs, 21, if x < sy,

k|_|,2Sy’ ILUZI U |—|2§y’ I./,USlZI, lf ISt < x
where the last inclusion is just the recursion hypothesis. Now if z < g then clearly z < y

and sz < y, hence in both cases we have

Ielyl € | |1zl O

2<y

I1II.4 Dominance in Ay,

We have seen in Lemma 111.2.0.2 the group Ay, = M/M;, where M; is by definition
the kernel of the surjective Kottwitz homomorphism rj;;. We then have a canonical

isomorphism (See §11.3.9.2)

—~

AM = M/M1 ~ HM(M) = X*<Z(M))%

This shows that Ay, is finitely generated abelian group, with torsion subgroup (Ap)er =

ker vy / ker kpr = MY /M.
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REMARK I11.4.0.1. The group Ay plays the role of the cocharacters lattice in the split
case (e.g. in the Satake isomorphism). If M is a split torus or if G is unramified, or
semisimple and simply connected then the group Ay has no torsion, i.e. M* = M, (see

Remarks 111.15.1.1 and 111.15.1.2).

There exists a natural injective finite-cokernel homomorphism X,(S) — X*(Z (ﬁ))”

In

[Ros15, §2.7], which yields an isomorphisms

X,(S)®z R ~ X*(Z(M))], @z R ~ Ay @z R.
The map vy: M — X,(S) @z R (Lemma 11.3.2.2) identifies Ays/(Anr)ior = M/M* with
a lattice A,; in X,(S) ®z R, and rank(Ay;/(Anr)ior) = dimpg X, (S) ®z R. By the above
isomorphisms, the extended geometric apartment A(G,S)e acquires the structure of an
affine space over Ay ®z R = A;; ®z R, thus one gets an embedding

Ay — Ak (G,S), v v(v) + ao.
Define’,
M*:={me M: (a+0)(v(m)+a,) = (vi(m),a) >0, Va € &L 1.

We call M* (resp. M™) the set of dominant (resp. antidominant) elements of M.
Let A]j\} C Ay and Af/[ C A,; denote the images of M* by the natural projections

M — Aj} —» Af/[. In other words
Avr = ((a0 +Ay) NCH) —ao T Ay,
where C* are the two vectorial chambers
C* :={a € A(G,S): (a+0)(a) = ala — a,) = (a — ao,a) >0, Ya € X }.

REMARK I11.4.0.2. An element m € M is in M if and only if vy(m)(a.) = v(m)+a, €

c’ (topological closure), and accordingly also vy(m)(a) C CT since by definition a C CT.
LEMMA 111.4.0.1. We have the following properties regarding Ay :

1. The elements of Ay, form a set of representatives for the orbits of the action of the
Weyl group W on Ayy.

2. If my,ma,...,my € Ay, then there exists mo € Ay, such that mo +m; € Ay,° for
all1 <1< k.

3. If my,mg € A}, then £(my 4+ mq) = £(my) + {(my).

"Reminder: the notation a + 0 was introduced in definition 11.3.4.1.
8We will denote the operation on A, additively.
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For every w € W, we have:
4. L(mw) = L(w) +L(m) if m € A,
5. L(w(m)) = L(wmw™) = L(m) for allm € Ay.

Proof. The first property is [HV15, §6.3 Lemma]. The rest can be found in [Ros15, Lemma
5.2.1]. O

REMARK I11.4.0.3. Of course the above lemma remains valid if we replace Ay, by A},

We close this subsection with:

PROPOSITION I11.4.0.1 (Cartan decomposition for K). The map G — K\G/K defined
by m — KmK, induces a bijection Ay, ~ K\G/K ~ A},.

Proof. This is a consequence of Lemma [11.4.0.1 (1), and the Bruhat decomposition for G

in proposition 111.2.0.1. O

III.5 Relative Hecke algebras

We attach for any ring R the R-module C.(G, R) of locally constant and compactly
supported functions f: G — R. Let H be any open compact subgroup of GG. The group
G has a unique left invariant measure py normalized by H on Q [Vig96, §2.4]:

CAC,Q) —Q, fro /G F(9)dpn(g),

such that

/GlH(g)duH(g) = 1.

The vector space C.(G,Q) acquire the structure of a Q-algebra without a unit, when

endowed with the convolution product with respect to py:

Fra fiaes /G F@) (g™ D)dpnlg) (f.f € C(G.Q)).

REMARK II1.5.0.1. The above expression of the convolution can be rewritten
frn f'@) = [ 1o D)dnlo)
G

=/ f(zg)f' (g7 )dpn(zg) (9 — zg)

= [ f(zg)f (¢ ")duul(yg).

G
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This shows that for f, f" € C.(G,Q), if f is X-invariant on the left and f' is Y -invariant

on the right, then f *g [’ is also X -invariant on the left and Y -invariant on the right.

The group G acts on the underlying Q-vector space of this algebra by translation, on the
left and on the right as follows:

(G x G) xC(G,Q) » Co(G, Q)

1

((9:9), /) ——— ((9,9) - [: = fg7 2g)).

LEMMA II1.5.0.1. Let X,Y be two open compact subgroups of G. For any g,h € G, one

has
(2) ]_gy X ]-hX = ’YﬂhXhilyngYhX
.. YNnX
(44) gy *g Ixpx = ]X‘ﬁ hthHl\ngYX *m lnx,

where, the notation |O|g denotes the volume of O with respect to the measure pug.

Proof. (i) Observe that the function

Ly o L) = [ 1 (0L (6” a)dun ).

can only be nonzero on the set gYhX. Let a € gYhX and write it as a = gyhx, thus
1,y *pg 1px(a) = [gY N aXh g =|gY Ngyha Xh |y
= lgyY NgyhXh g =Y NhXh Yy
where, the third equality holds thanks to the left invariance of the measure. Therefore,
1y *g Lnx = Y NAXAh ™ 1,ynx.

In particular, taking g =1 and Y = X we get 1x *g 1px = | X NhXh Y ulxnx.
(i) Using (i) we get

1
X NhXh= 1ty

YN Xy
T X NhXh gy

1y *p 1xpx = (Lgy #m 1x) *g 1px

1gYX X ]_hx. L]

ExaMPLE I11.5.0.1. Forg,q € G, write Hg'H as disjoint union Uyh'g'H, then by lemma

above:

Yow *u Yngn = Ygugn = 10, g0vgm = E Lowgn.
h/



72 CHAPTER III. THE RING U AND HECKE ALGEBRAS

If also HgH = Uy,hgH, then

Yo *5 Lpgn = ( E 1hgr) *r pgn = g Lignga.
h ol

Now, we associate to the pair (G, H) different Z-modules.

DEFINITION II1.5.0.1. We define C.(G/H,Z.) to be the Z-module of compactly supported
functions f: G — 7. which are H-invariant on the right. It has the following canonical
basis {1ym: g € G/H}. In addition, the group left action of G on C.(G,Q) as defined
above, restricts to a left action on C.(G/H,Z). We also define C.(G ) H,Z) C C.(G/H,Z)
to be the Z-algebra’ of functions f: G — Z, that are also H-invariant on the left. We call
C.(G ) H,Z) the Hecke algebra relative to H and denote it Hy(Z). Likewise, for every

commutative ring A, we define the relative A-algebra obtained by base change

Hu(A) =C.(G ) H,Z) = Huy(Z) @7 A.

The Hecke algebra Hp(Z) is a free Z-algebra, it has the canonical basis {1p,n: g € HgH}.

PROPOSITION II1.5.0.1. The following map"’

HH(Z) i) EndZ[G] CC(G/H, Z)opp

h———— e f> fxuh,

s an isomorphism of rings.

Proof. We first prove that the above map is an isomorphism of Z-modules. The injectivity
being clear, we prove surjectivity. Any G-equivariant endomorphism e of C.(G/H,Z)
is uniquely defined by e(1p). Since 1y is H-invariant on the left, e(1y) must also be

H-invariant on the left. This shows that e is the image of the Hecke element e(1y).

Finally, for any hy, hy € Hy(Z), we have

€h1*Hh2(1H) =1y *p (hl *H h2)
= (1g *g h1) % ho
=en, (1p) *u ho

= €hy © ehl(]‘H)

9By Remark [11.5.0.1 and Example 111.5.0.1, we see that C.(G J H,Z) C C.(G /) H,Q) is stable under
*F.
10The notation Endz¢) Co.(G/H,Z) denotes the ring of G-equivariant endomorphisms of C.(G/H, Z),
and the superscript opp indicates the opposite ring.
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As we previously said, elements of Endyq C.(G/H,Z) are uniquely determined by the
image they give to 1y, this shows that ep ., n, = €n, © €n,. This ends the proof of the

lemma. O

REMARK I11.5.0.2. The map
h —— hV: g~ hig™),
is an involution, and for any hy, he € Hy(Z) we have

(h1 X hg)v :h\2/ XK hY L]

The following lemma is meant to clarify the multiplicative structure of the relative Hecke

algebra Hpy (7).

LEMMA [11.5.0.2. For g,¢' € G, we have

Yagr *0 Lugn = Z (9,9 9" Lugrm, c(9,9,9") = |HgH Ng"Hg ™ H|,
g”EC’g,g/

where, Cy o, denotes a set of representatives for H\HgHg¢'H/H.

Proof. First, we know that the function 14y %y 1y is H-biinvariante (Remark 111.5.0.1),

therefore, using the canonical basis of Hy(Z), it can be written as follows

lygn *g lugn = Z c(9,9,9" ) ugnm, cg9.9.,9")eN
g'eC,

for some finite index set C, , and integral coefficients c(g, ¢, g”) # 0, for each ¢” € C; 4.

Secondly, the following integral

]-HgH X ng/H(a) = / ngH(b)ng/H(b_la)d,uH(b),
G

is nonzero only if a € HgH g'H. Therefore, if Hg"H C HgHg' H, we have
c(9,9'.9") = 1 *n Lugu(g”) = |H9H N g”Hg’_lH’H € Z>o.
For each double coset Hg"H C HgHg'H, write ¢" = gh”¢' for some h” € H, thus
c(g,g’,g") = |HgH N gh"g'Hg " H|, > |gH|, = 1.

This shows that Cy , is indeed a set of representatives for H\HgH¢'H/H. O
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REMARK II1.5.0.3. For any g,¢' € G, we have
[ L s g @dn(@) = [ [ Ly L i @) (0
G GJG

~ [ ] Lo Oty g O)dta)  (Fubini)
GJG

— /G ( /G 1H9/H(b_1a)duﬂ(a)> Lrgr (b)dpw (D)
- /G bH g'H |y Lirgr (b)dper (b)

11 Hly [ Ly (D)
= |HgH|y |Hg' H|p .
This suggest (and shows) that the linear functional
dy: Hy(Z) — 7,

defined on the canonical basis elements by 1ygu — |HgH|, is an isomorphism of rings.

Consequently, we see that
]-HgH € HH(Z)X < dy (]-HgH) =1<«<— g < Ng(H)

LEMMA 1I1.5.0.3. Let H' C H be two open compact subgroups of G (e.g. H =1 and
H = K). The function ey := |H | "1y is an idempotent of the relative Hecke algebra

Hu (Q), moreover we have a natural isomorphism of rings

(er *m M (Q) *m emr, +, %) —— (Hu(Q), +, *u), -

Proof. 1. Idempotence: By Lemma [11.5.0.1, we have 1y *g 15 = |H |1y, this shows
that ey si indeed an idempotent.

2. Let us compare the two associated measures py and py. We have
1= [H]n = [ Lu(o)dun(s)
a

= ). /G Larr (9)dpirs (9)

acH/H'

= Y |H

a€H/H'
Hence [H : H'] = |H|p = |H'|;f', and dpg = [H : H')dug(g) by uniqueness of the

Haar measure.
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3. Using Lemma [11.5.0.1, we have for any g € G
1 |HngHg 'm
H:HPH NgH g g ™

1 |[HngHg'|  |H'|w
[H:H] |Hlw |HngHgt ™"
1 |y
~ [H:H [HgH|z ™"
Remark 111505 1 d(g)
a [H : H'] du(g)

Consider the following isomorphism of Q-modules

ey *xg 1H’gH’ Xpgreg = [ H

]-HgH-

(err *m Hu(Q) *w e, +, %) —— (Hu(Q), +, *u),

defined on the canonical basis elements

1

1 —_ ————1 .

and since

1 1 1
7 lugn *n - 1ugn = [ ]]—HgH *g 1agn (Vgagl € G),

[H : H'] [H : H'| H:H

this is actually an isomorphism of rings. m

REMARK 111.5.0.4. The identification of Lemma [11.5.0.5 remains valid, by the same

proof, if we replace Q by any subring in which [H : H'] is invertible.

II1.6 Special-Hecke and Iwahori—Hecke algebras

DEFINITION II1.6.0.1. The Hecke algebra (H(Z),+, xx) relative to the maximal special
parahoric subgroup K, will be called the special-Hecke algebra (sometimes the spherical
Hecke algebra, or the Hecke algebra in short). The Hecke algebra (Hi(Z),+,*;) relative to
the Twahori subgroup I, unll be called the Iwahori—Hecke algebra.

Using Proposition [11.4.0.1, one can exhibit a natural Z-basis for Hx(Z) as follows

{hm = 1KmK for m S A&}
Similarly, according to Proposition I11.2.0.1, the following set forms a Z-basis for H;(Z)
{iy := 11ur for w € W}

Recall that § C N;/M; corresponds to the set of orthogonal reflections with respect to
the walls of the fixed alcove a (Using the identification Ny/M; ~ Wg, see §I11.1).
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THEOREM II1.6.0.1 (The Iwahori-Matsumoto Presentation). The Iwahori-Hecke ring

H(Z) is the free Zi-module with basis (i) endowed with the unique ring structure

weW

satisfying

o The braid relations:
bl = fww if w,w € W such that {(w) + ((w') = ((ww).
o The quadratic relations:
i2=qsi1+ (¢ — 1)is if s €S,

where, q, := [[wl : I| denotes the number of left I-cosets in Twl for w € w.

Proof. This is [Vigl6, Theorem 2.1|. The Braid relation follows from Lemma [11.3.0.1 and
Remark [11.3.0.1. O

REMARK II1.6.0.1. The above Iwahori-Matsumoto presentation yields the following con-

sequences:

e Since for any z, 7 € Q we have ((z) = ((2') = 0 = ((z2), by the braid relations,

Z.z *7 Z.z’ = Z.zz’u

hence, the Z-linear map z +— i, embeds the group algebra Z[Q] into Hi(Z). In

particular, i, € Hi(Z)* for any z € Q, with inverse i,1.

e Recall that (N1 /My, S) ~ (Wag, S(a)) is a Coxeter system (Theorem 111.1.0.1). Let
w € Wag and w = 8183+ Syw) @ Teduced expression, then using Lemma 111.5.0.1

one shows that

Guw = (4s1qsy " " * ng(w> .

Let z € Q¢, then (by definition of (NZC,v) z normalizes I and q, = 1, thus

15, Lemma 111.2.0.1

qr: W Waﬂxﬁg—)]N

factors through Wag.

o For any w € Wyg the intger q, s actually a power of q. By the previous remark,
it suffices to show it for all affine reflections s € S. Using the bijection IsI /I ~
I/(I N sls), and writing the latter as quotient of two affine root groups [Vigl0,
Proposition 3.23.] one then shows the claim, see Corollary 3.31 loc. cit..
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e Note that iy € Hi(Z[g))* for all s € S with inverse i;' = q; ' (is — qs + 1), hence
by the braid relation iy, € H(Z[q*"]))* for all w € W. Indeed, let w = s, - - Se(w) %,
with 81+ Se) a reduced word in Weg and z € Q. By the Braid relation we have

oy = Ty *° -isZ(w)iz, accordingly

1 —1-—1 1
by =1, Se(w)  Us1
. 1 1
" 1q—(zse<w> = sy T 1) —(is, — g5, +1)
So(w) 51
o(w) 1
- H _izil(isé(w) B qsl(w) + ]') U (7:51 — s, + 1)
i—1 Ui
1. . .
N q_2271(255<w> = gy T 1) (i) — @y +1).

e [f we do not include the inverse of q in the coefficients ring, we still have
Tl = Tty = Gu, 0 Hi(Z),
where, iy, = (is,, — Qsgy T 1) (isy — sy +1).
e Forallw e Wy and z € ﬁ, let w = s1--- sy be a reduced expression, hence by the

Braid relation again we get

lwls = lws
=gy s
= 7;,z'l.z*lslz T Z.zfls[(wz
i 0

I11.7 Iwahori decompositions

We now give an Iwahori decomposition for the special parahoric subgroup K. Note
that we are no longer in the unramified case where we could have pulled up the Bruhat

decomposition for the residue field of F.

ProrPoOSITION II1.7.0.1 (Iwahori decomposition of K - 1). We have the decomposition

K= |_| Twl.

weWw

Proof. By the Bruhat decomposition G = INT (Proposition [11.2.0.1) every element k € K

can be written in the form iné’, for some n € N N K and 4,7 € I. It is then clear that we
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have K = I(N N K)I, hence
K = U Inl.
ne[n]leNNK/NNI
LEMMA II1.7.0.1.
Mi=MNK=MnI=NnNI.

Proof of the lemma. The first two equalities are a particular case of Lemma [1.3.9.2 by
taking F to be a, then a. For the second equality, let n € NNI. By the Iwahori factorization
of = (INUT)(INU)M; (Corollary 11.3.9.2), there exists u € (I NUT)(INU™) and
m € M, such that n = um. Thus n = m since nm~' € NNUTU~ = {1} [BT65, 5.15].
This proves NN I C M;. The other inclusion is clear since M; C I by Iwahori factorization
of the latter. O

Using Lemma [11.7.0.1 we get

K = U Inl = U Inl = U Twl.

nen]eNNK/NNI nen|eNNK/MNK weW

It remains to prove that the union is disjoint. This follows from the fact that the map
N — I\G/I ~ W given by n — Inl has kernel M since by definition W = N/M;
(Proposition 111.2.0.1). This means that the union is disjoint in G and hence also in K. [

REMARK II1.7.0.1. The preceding proof may be applied more generally. Let F be a facet
lying in the closure of a. Let Kz be its associated parahoric subgroup (Definition 11.5.9.1).

Since F C a we have I C Kx. We have
Kr=I(NNKg)l Proposition 111.2.0.1

=I(NNKz/NNI)I

= Uln[

neNNKx/NNI

= U Inl Lemma I11.7.0.1
nENﬂK]:/MﬂK]:

= U Inl Lemma 11.5.9.2

neNNKx /M,

= |_| Inl Proposition [11.2.0.1.
nGNﬂK}‘/Ml

Here, the quotient WEr = NNKz/M, identifies with a finite Coxeter subgroup Wi C Wag
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(Definition 11.5.5.2). We may then rewrite the above decomposition as follows

Kr= |_| Twl.

wEWKf

PRroPOSITION II1.7.0.2 (Iwahori decomposition of K - II). We have the decomposition

K=||BnKuwr

weWw

Proof. We have the following two statement:

1. By [HV15, Theorem §6.5] one has BN K = M (U™ N K).
2. Let us show that U™ N K = I'*. Recall that Corollary 11.3.9.2 gives an Iwahori
factorization I = I* M1~ with

< <
[T =INnNUT = H Upio, and [7:=1INU" = H Upinzt

aet’I)*ﬂ(I)red a€¢70¢red

for a fixed ordering < of the set ®,.q such that the positive roots occur before the

negative ones. Using the second part of Corollary 11.3.9.2, we obtain

B3
U'nK= ] Uwmo=1I"

a€PTNP,oq

Combining the above two points and Lemma [11.7.0.2 below, we find:
Twl = I"MI"wl = (BN K)["wl = (BN K)w(w '~ w)l = (BN K)wl.

Finally, Proposition [11.7.0.1 gives the desired decomposition. O

LEMMA II1.7.0.2. For every w € W we have wl~w™! C I.

Proof. Let n € NN K, with image w in W. By Lemma [1.3.4.1 we have

nU . —in = Us,

a+ng
where, 3: Aq(G,S) — R is the affine map w(a) + nj' — w(a)(vn(n)(as) — ao), thus
B =w(a)+n,' sincen € NN K fixes a,. For a fixed ordering < of ®~ N ®,.q, we get

= =
- -1 -1 _
nl n - = H nUy p-1n = H Uwa)nzt-
aE@*ﬂ@red ae(bimq)red

To conclude, recall that for each o € ®,q one has U, st C Uaso'!, and this shows:

=<
nIn?c [ Uwwsocl O

a€P NP oq

HRecall that the set of subgroups (Uy+r)rer, is by definition decreasing.
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We end this section by recalling the Iwasawa decomposition and proving two lemmas we

will be regularly using in the sequel.

PROPOSITION I11.7.0.3 (Iwasawa decomposition). If P =L x U}, is any semi-standard

(see 11.2.6) parabolic subgroup of G with Levi factor L and unipotent radical U}, then
G = PK and
PNK=(LNK){UNK).

Proof. When the parabolic P is minimal this was given first in [HR10, §9.1|. For semi-
standard parabolic subgroups see [HV15, §6.5 Proposition & Theorem]. O
LEMMA 1I1.7.0.3. For every m € M~ we have

m I mcl- and mItmtcI®

Proof. We have seen a the following factorization of I in term of affine root groups:

<
IF=InU = J] Uppo

a€P~NP,og

for a fixed ordering < of the set ®__,. For any r € I',, we have
mUMTm_1 = Untr—a(vn(m)(ao)—ao) Lemma [1.3.4.1
= Yatr—(v(m),a)
Hence'”, for all r € T,

| € Uasr if (v(m),a) <O0(=m e M* and a € 74 N Prea)

mUg+rm™
D Uiy if (v(m),a) > 0(<=m € M* and a € &, N Do)
and so
< <
17— -1
m I m = H m Ua+n;1m - H Ua+n;1+(u(m),a)'
aE‘I)*ﬂd),ed OéE@iﬂq)red

In particular, if m is antidominant,

=<
mI'mc  J] Uy =T
a€P NP oq

The second inclusion is obtained similarly. O

REMARK II1.7.0.2. Let Q C A be any bounded subset containing a facet F. As in

Remark 11.3.9.5, consider the open compact subgroup Kq = P(F"")4 N Gy. The proof

12Recall that, the set of affine root groups (Uar)rer, is by definition decreasing (§11.3.3).
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above gives then mutatis mutandis a more general result: Using the same remark, we see
that the product maps
~ +
Haecbredmbi Ua+fn(a) —— Uy =UanN U+

are homeomorphisms whatever ordering of the factors we take. Then for all m € M~ we
have

mUom CU;, mUim™* CUS.

If we assume further that Q) contains the alcove a, then

Lem. 11.3.9.3

My C NNKqogCNNK, C M;.

Therefore, by Remark 11.5.9.5 Kq has an Twahori factorization with respect to B meaning:
the product map

Uy x My x Uy —— Kq
18 an isomorphism.

Let 05 be the modular function on the fixed minimal parabolic B containing M given by

the normalized absolute value of the determinant of the adjoint action on Lie UT:
dp(m) = | det(Ad(m)riew+))|r, Ym € M
where | - | is the fixed normalized absolute value of F'.
REMARK II1.7.0.3. Let O C Ae¢ be any bounded subset containing the alcove a. An

immediate consequence of the above remark is that for any pair mi,my € M*" we have

K'miK'moK' = K'mimoK'. For example, if both are antidominant then
KglengKQ == KgmlUngUamgKQ
= Kom U Mymi (mimg)my ' Ugma Ko
= Komimy Ko,
If they were dominant, the same argument holds using this time the decomposition Kq =
Ug MUY instead. Now, using Lemma I11.5.0.2, we see that for any my,my € M both
dominant (resp. antidominant) we have
1komKa *Ko Lkamka = |[KamiKao N m1m2KQm2_1KQ}KQ 1rgmimaka-

When my, ms € M~ , we claim that ’K_leK_Q N mlmgKsz_lKQ|KQ =1.

13Meaning, both are dominant or both antidominant.
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Proof. Observe that

KomiKq N mlmgKQmQ_IKQ = U;z_leQ N mlmgUémglKg
= (Ugmy N m1m2U5m§1KQ)KQ N mlszamglKQ
= (Ugmy NmymaUgmy ' Kq)Kq
= (Us NnmimaUgmy ' Komy )mi Kq
now, using (I11.7.0.2) and the Iwahori factorization, we compute the intersection between
the parentheses
U;{ N mlmgUémglKle_l = U;{ N MlmlmgUamQ_IU;{ml_l
Let u € UE; N mlmgUamglKle_l, and write it as u = mou_uy, with mg € My, u_ €
mimaUg (mymg) ™! and uy € mUZmy", this implies

(wu;' )y uZ' =moeUTU NN
——
eUut eU-

But UTU~ NN = {1} [BT65, 5.15], hence u = uy, u— = 1 and my = 1, which shows
U NmymaUgmy ' Komy' = miUgimi?,

and consequently
KﬂleQ N mlmgKnglKQ = leQ.

So in conclusion, for my,my € M~ one has

1KQm1KQ *Ko 1KQm2KQ = 1KQm1m2KQ- (IH.l)

]
REMARK I11.7.0.4. If K’ is any compact subgroup admitting an ITwahori factorization

with respect to B (as in the above remark), we get a homomorphism of Z-rings
ZIM~| —— Hg (7).
If, in addition, M N K' is normal in M and M /M NK' abelian (for example G1-fixators or
G!-fizators of bounded subset of Aeq containing an alcove.), then the above construction
yields an homomorphism of rings
ZIM~-(MNK"/MNK'| —— Hg(Z)

with commutative image.

LEMMA I11.7.0.4. If Kq is the compact open subgroup defined in Remark [11.7.0.2, then
for any m € M~
[KQmKQ : K_Q] = 5B(m)71.
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In particular, if Q = a, then we get ¢, = [ImI : I| = dg(m)~" for all m € M~.

Proof. Consider the map iymis + 41 from the set KomKq to Kq. This yields a bijection
KQmKQ/KQ l> KQ/KQ N mKmel.

Here, Ko N mKom™ = Kq N Komy) is the Kqeonw = P(F"™), N Gy the G;-fixator
of the convex hull of Q%™ := Q Uv(m)(Q). Since m € M~, then Ko NmKqom™' =

UéMlmU;;m*I and so
(Ko : Ko NmKqm ™) = [Ud : mUIm™]

= 05" (m). O

ITI.8 The module M;(Z)

Following the approach of [HKP10], we define the universal unramified principal series
right H;(Z)-module M(Z) = C.(MyUT\G/I,7Z), this is the set of Z-valued functions
supported on finitely many double cosets. The H;(Z)-module structure of M;(Z) comes
from the natural right convolution action'*. There is a natural identification'® between
R := Z[Ay] and the Iwahori-Hecke algebra H(M /) M, Z) that allows us to endow the
H(Z)-module M,(Z) with a left R-action as follows: define for every ¢ € M;(Z) and
r € R:

r-(g) = /Mr(a)wmlg)duMl(a) (Vg € G)

here, dyyy, (a) is the Haar measure on M giving M; volume 1. We will see in Lemma
111.8.0.2 a more concrete description of this action. It is clear that the actions of H;(Z)

and R on M;(Z) commute: M;(Z) is an (R, H(Z))-bimodule.

REMARK II1.8.0.1. Here, we have defined an untwisted action without using the modulus

character. The twisted action is defined as follows

T wist () = /M 512 (a)r(a)y(a " m)duy, (a).

MFor every 1 € M(Z) and h € H(Z), the action is given by the convolution ) 1 h.
15This is a consequence of the fact that M; is the unique parahoric (in particular, an Iwahori) subgroup
of M.
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In Theorem [11.8.0.1, we will generalize [HKP10, Lemma 1.6.1]. For this purpose, we begin

by the following two lemmas:

LEMMA II1.8.0.1. There is a canonical bijection

W —= MUN\G/I .

Proof. Consider the natural map W — MUT\G/I; nM; — MyU"nl, it is clearly well

defined. The surjectivity follows from the equalities:

G = BK Proposition [11.7.0.3
= Upew Bwl Proposition [11.7.0.2
= BNI
= MU'TNI Levi factorization of B.

To show injectivity, let ny,ny € N having same image in MUT\G/I;
ny € UMMy I, = U+M1L,N(n)(a)n1 Proposition 11.3.4.1 (1)
= UM Lyymy@m My C Ly (my(a)
= U+UVN(n)(a)M1n1 Proposition [1.3.9.2
= U (U N Ly @) (U™ N Loy (my@)) Mima
— U (U™ N Ly my () Mis.
There exists then m € M; such that nony'm=! € UT (U~ N I(q)). But since UTU" NN =

{1} [BT65, 5.15], we must have mn; = ns, i.e. Min; = Mins. In conclusion, we get a

canonical bijective map W — MUT\G/I. O

REMARK II1.8.0.2. The preceding proof may be generalized as follows. We continue with

the notation of Remark 111.7.0.1. We have
G =BNI
= M\U"NK»r I C Kr

= U MU nK -

neEN/NNK
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Let ni,ne € N such that MiU ™ K7 = MU ny K. This is equivalent to
ny € UTMim Kr = U+K1,N(n)(;)n1 Proposition 11.5./.1 (1)
= U+UVN(n)(]:)M1n1 Proposition 11.5.9.2
= U (U N Koy o)) (U™ 0 Ky ) Mama
=UT (U™ N K,ym)F)Mini.

Using again UYU~ NN = {1} [BT65, 5.15], we see that nyny* € My C N N Kz. Hence
ni (NN Kz)=ne(NNKg), this implies

G= || MUDKs (I11.2)

TLGN/NQK]:

We have defined in Remark 111.7.0.1
WK]: = Nme/Ml C W,

for example: if F = a then WEs js the trivial subgroup, and if F = a, the fized special
vertex then Wke = N 0 K/M, = W. Combining the decomposition G = IN Kz and the
last isomorphism in [HROS, Remark 9], we get

MNI\N/NN Ky —=— I\G/Kr —= W/WE# |

but My = NN 1 (Lemma [11.7.0.1) is normal in N and M; C N N Kz, thus we actually
have a bijection Mi\N/N N Kz ~ N/N N Kz. We may then rewrite (111.2) as follows

G = UweW/WK}' MU wKz, this gives a bijection generalizing the above Lemma

MUNG/Kr —= W /WK (I11.3)

An immediate consequence of Lemma [11.8.0.1 is:
COROLLARY II1.8.0.1. The family

{v = Lppu+wr: W E W},
forms a Z-basis for the Z-module M(Z).

LEMMA 111.8.0.2. The action of R = Z[Ay] on M(Z) is induced by the action of
Ay = M/M; on MLUT\G/I, so for any w € W andm € Ay we have

m - Vy = Umao-

Proof. Let w € W and r = mM; € R for some m € M. Recall that R is identified with

the Iwahori—-Hecke algebra for M (see footnote 15 on page 83); r = mM; <> r = L.
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We have defined
T U, (b) = / r(m/ ) vy (m'~1b)dpar, (m'),
M

The integral is non-zero only if b € mMUtwl = MU mwlI (m € M normalizes UY),

hence 7 - v, = 8V, Where s is the scalar r - v, (mw) € Z:
T Uy (maw) :/ r(m") vy, (w)dpuyr, (m')
M
— [ L s, ()
M

ProPOSITION II1.8.0.1. The action of Hi(Z) on M(Z) is described by the following

rules: for every w € W and m € Ay, we have

1. V1 *] Ty = Uy,
2. Uy *[ by = Umw»

3. V1 X1 Zm = Um me S A]_V[

Proof. 1. Let w € W. We abuse notation and write also w for any representative in N N K
of the class w € W. If the quantity vi s, (b) = [}, 4, %w(a™'b)dpus(a) is non-zero for
some b, then there exists a € M U1 such that b € alwl, hence b € M{U"I - Iwl. By
corollary 111.7.0.2, for each w € W, we have wl-w™! C I. Hence,

be MiUTT - Twl = MUY TTwl = MU wl.

Thus, vy %5 i, = sv,, for some scalar s € Z. It suffices then to compute vy *; i, (w) = s.

The only elements of G which contribute to the integral
/ iw(a  w)dur(a),
MU+
are those in M U+I Nwlw™'I. This set is equal to I, indeed:
Ic MU INwlw ' I Cc MU TNK =M{UTNK) =1,

where, we have used w € K for the second inclusion, and the last equality is a consequence

of U N K = I" (see proof of Proposition 111.7.0.2). In conclusion, we have proved that

5= / dus(a) = 1.
(MU Inwlw=11)
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2. To prove the third equality we use (1) and Lemma [11.8.0.2 above. Indeed
U *1 Gy = (M- V1) %7 Gy
=m - (v %1 ly)
=M Vy = Upay-
3. Let m € M~. The value of vy *; in(b) = [, 4 im(a”'D)dps(a) is non zero only if

b=aa"'b € MyUI-ImlI. Using the lemma above and the Iwahori factorization of I we

obtain
MUTIT - ImI = MU ImI
= MUTITI mI (I =MITI)
= MUTI mlI
= MU Ymm™I"mI
= MU mlI Lemma [11.7.0.3
Thus, vy *7 iy = 8 Uy, With s = (vq %7 4,,)(m) = vol(M{UTT N'mIm~I). We claim that
MUYINmIm ™I = 1.
Recall that M; normalizes U™, so
MUTINmIm™ ' I =U"TNmIm™ "I
=UINmI-m™'I Lemma [11.7.0.3
=WUtrnml-m'DI
Using again Lemma [11.7.0.3 and the Iwahori factorization of I, the intersection between

the parentheses is:
Urnml - m ' I =U"N My (mI - m I,
Let u € UM N My(mI=m™Y)I", so u = myiyis for some my € My, iy € mI~m™' C Uiy €
I, and
my = (uiy )iyt € UTU™ N N.
Now, because UTU~ N N = {1} [BTG65, 5.15], we see that'® m; =1, u = iy and 4; = 1.
This shows that U N MymI~m 117! = I'" and consequently the claim

MU INmIm ' I=1"]=1.

16 Also since, unipotent radicals of opposite parabolics have trivial intersection.
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In conclusion, we have shown that
V1 *[ Gy = V1 ¥ G (M) Uy = vOl(UTT NAmIm ™ v, = vy,. O

The following proposition gives a precise description of the R-module M;(Z):

PROPOSITION I11.8.0.2. The R-module M(Z) is a free module of rank |W|, the size of
the finite Weyl group, with canonical basis {v,, w € W}.

Proof. Recall that by Corollary 111.8.0.1 the family {v,} for x € W = Ay x W is a Z-basis
for M;(Z). We can write each x as x = m,w, € W for a unique m, € Ay, and unique

w, € W. By Lemma [11.8.0.2 above, we have
Vg = My + Uy, -

This proves that {v, }wew is a generating and linearly independent set of the R-module

M;(Z) (Lemma [11.8.0.1). n

We would like to describe the structure of M;(Z), this time as a H;(Z)-module. However,
a satisfactory result can only be obtained after enlarging the coefficients ring. Set R :=

Zlg*™].
THEOREM II1.8.0.1. The following homomorphism of right H;(R)-modules
Hi(R) —M;(R)
h U1 k1 h

18 an isomorphism.

Proof. 1t suffices to show that the map h +— vy *; h is "upper triangular with respect to
the Chevalley-Bruhat order, with invertible diagonals". Recall that #H;(Z) (resp. M(Z))
admits the Z-basis i, (resp. v,) for z,y € W. We have

vy *7 1y (b) = /le(ba)iy(a_l)d,u[(a).

We can write vy *; ¢, = ZzeW CoyUs With ¢y € 7. If 7 € W such that Coy 7 0, then
vy *11,(x) # 0. Since vy *; 4, can be non-zero only on the set MU IyI, so x € MU Iyl.
This implies that MU *xI N Iyl # ().

LEMMA I11.8.0.3. Letx,y € w. If MU xINIyl # () then x < y in the Chevalley—Bruhat

order.
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Proof. The proof resembles the proof of the claim in [HKP10, Lemma 1.6.1|. Let m € M,
and u € UY such that mux = iyi’ € Tyl for some i, € I. Choose a cocharacter u € X, (S)

dominant enough to ensure that wuw* € I'". Therefore,
Ig*zl = Im(ctuw H)whel = Totiyi'l C I Tyl.
Now, we use Corollary [11.3.0.1 and deduce that

Iwtxl C |_| Itz

z<y

which is equivalent to the desired inequality = < y. O]

Using Lemma [11.8.0.3, we obtain the upper triangularity:
Uy ¥ by = Z Cy V-
zEW <y

For all y € W, the corresponding diagonal coefficient is:

Cyy = V1 %11y (y) = / vl(ya)iy(a_l)duf(a) = |y_1U+I N Iy_lf|.
e

Note that ¢, , > |y~'I| = 1 and is a power of ¢ by Lemma [11.8.0.4 below. Hence, ¢,, € R*

= is indeed invertible once we extend

for all y € W. This proves that the matrix (Coy)pyeiv

the coefficients from Z to R. O]

LEMMA I11.8.0.4. For anyn € N the volume |nUTI N Inl| is a power of q.

Proof. Consider the map i,aiy — i from the set nUTI N Inl to I. Here, if i1ni, lies in
nUTI N InI then i, € nUTIn~' N I, this yields a bijection (since nUTIn"' NnIn=t NI =
nIn='N1I)

nUTTNInI)I = nUtIn ' NI/nIn N 1.

We denote by w,, € W the image of n. Set
dF = {w,(a) € d: a € PF}.

By (4) and (5) of Proposition 11.3.4.1 we have for any fixed ordering < of ®=:

<+ <-
I={ JI Ustru | M| Il Ustra
(bredm(bt DreqaN®y,

7By abuse of notation, we write @ for w(u).
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recall that

0if v € ®F
fala) =
ntifaed .
We also have
<4 -
nUTMI n~t = H Uu(F) | - M - H Usan) |
BreqN®F DreaN®

where, (,(n): b+ w,(a)(b —vn(n))(a.)) + ng', thus

Ba(n) = wp(a) +14(n), 7o(n) = wp(a)(a, — vn(n))(a.) +n,' € R.

The fact that Uj (F)Ug (F) NN = {1} and UJ (F)NUg (F) = {1} shows

<+ =~
nU+M1[_TL_1 NI = H Ua-i—fa(a) - My - H Ua—i—maX(fa(a)ﬂ’w;l(a))
q>rcqu>;~t_ <I)rcqu)r_b

Similarly, we can show that

nMIn"' N1 = H Usmax(fa(@)r,1,.,) |~ M- H Udmax(fa(e)r, 1)
B,can®;h Bean®;,
Therefore,
=+
nUMI 0 0T /ndM I 0™ 0T~ [ Ustpa)/Ussmax(fatarr )
B,ean®;t
The size of each quotient in the right product is a power of q. O

The above theorem, implies immediately the following

COROLLARY 111.8.0.2. The right H;(R)-module M(R) is free and of rank 1, with canon-

1cal generator vi. This yields a canonical isomorphism
Hi(R) ~ Endyy,(r)(Mi(R)),

sending h € H;(R) to the endomorphism vy *; h' — vy %5 hx; h'.

ITI.9 Decomposition of #;(R) and the untwisted Bern-

stein map

We begin this section by considering two sub-algebras of the Iwahori-Hecke algebra H;(Z):
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e The finite Hecke algebra:
H(Z) =C(K | I,7).
A Z-basis for H;(Z)° is given by {iy }wew (Proposition I11.7.0.1).

e The (R, H(Z))-bimodule structure on M;(Z) induces a homomorphism of algebras

18

R — Endy;z)(M1(Z2)),

which is actually an embedding since M;(Z) is free over R.Composing the above
embedding with the canonical isomorphism'’ Endy, g)(M(R)) =~ H;(R) (Theorem
[11.8.0.1), we obtain an embedding of algebras:

OBemn: R < Hi(R)

m s Oy,

characterized by the property: m - v; = vy *; ©,,, for every m € R.

REMARK I11.9.0.1. Elements of Ay C R* act invertibly on M;(R), i.e.
O gern (Aar) C Hi(R)™.
Therefore, for every m € Ay, the Twahori-Hecke operator i,, € H;(R) is invertible with
inverse ©_,,, since by (3) Proposition I11.5.0.1, we have i, = ©,, for m € Ay, (See also
Remark 111.0.0.1).
In our setting, it is easy to obtain a statement similar to [HKP10, Lemma 1.7.1]:
LEMMA I11.9.0.1. The homomorphism of R ®z R-modules
R ®z H}(R) = (R @z H})(Z)) @z R — H(R)
m® h+— O,, %1 h,

1s an isomorphism. Composing this homomorphism with h — vy *1h yields the isomorphism

of R ®z R-modules
R ®z HY(R) — M;(R),

given by m & iy — U, forw € W oand m € Ay;.

18Tn other words, since the action of R on M(Z) commutes with the action of H;(Z), elements of R
may be viewed as endomorphisms of M;(Z).
19More precisely, we mean the composition of the canonical embeddings

R — EndHI(Z)(MI(Z)) — EndH;(R) (M1(R)) ~ H;(R).
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Proof. Let us first show that the composition of the maps
R @z HYR) — Hi(R) — M (R),

yields an isomorphism of R ®z R-modules. For every m € Ay, and w € W, the image of

M @ by 1S V1 *7 O,y *7 G4yt

V1 k1 O, Ky = M- Uy K] Gy Definition of ©,,
=M vy (1) Proposition I11.8.0.1
= Umaw Lemma [11.8.0.2.

This formula shows in particular that the induced isomorphism R ®z H(R) — M;(R) is
defined over Z. Now, since H;(R) — M (R) is an isomorphism by Theorem [11.8.0.1, the
first map R ®¢ HY(R) — H;(R) must also be an isomorphism. O

A direct application of Lemma [11.9.0.1 gives an explicit R ®z R-basis for the Iwahori-Hecke
algebra:

COROLLARY I11.9.0.1. The TIwahori-Hecke algebra H(R) is a free left R @7 R-module *°,
with canonical basis {i,: w € W}. The sets {@m k1l m € Ay, w € W} is an R-basis
for Hi(R).

In the following proposition, we give an explicit formula for O, for all m € Ay,

PROPOSITION II1.9.0.1. Let m € Ay, then

-1

Gm = iml *7 (ng) = (im2>_1 *r im17

for any my, mg € A}, satisfying m = my — mo.

Proof. Let m = Ajp;. By Proposition [11.4.0.1, there exists mj,my € A}, such that

m = my — msy. Therefore,
O = Opern(m)
= ®Bern(m1 — my)
= ®Bern<m1) *T @Bern(—m2)
= Oy #1 Oy

-1

=ty *7 (Gmy) "t = (gy) " *7G,. O

20We implicitly identify R with its image Opem(R) C Hi(R).
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REMARK I11.9.0.2. The Twahori-Hecke operators ©,, generalizes the element denoted by
T in Lusztig’s [Lus83, §7] (up to the factor 65(m)"/2), which does not appear here because
of our untwisted definition of the action of R on M;(R). The twisted version of the map
Opem was attributed by Lusztig (for split reductive groups) to Bernstein [Lus83, §7], this

18 the reason we use the subscript Bern.

REMARK II1.9.0.3. For m, my and mo as in Proposition [11.9.0.1, we have an alternative

expression for @Bern(m) :

. 1
@Bern(m) = _Z.ml *r Z;an Remark 111.6.0.1
ma2
= dp(Mma)im, *1 . Lemma I11.7.0.4. O

REMARK I11.9.0.4. Observe that the subalgebra of H(R) generated by {©,,: m € Ay} is
commutative by definition (= Opem(R)).

ITI1.10 Untwisted Satake isomorphism

Motivated by arithmetic problems for Shimura varieties, Haines and Rostami [HR10]
established the following Satake isomorphism type Hy(C) ~ R"Y ®z C (Recall that K is a
special maximal parahoric subgroup of (). In this section, we will construct an untwisted

version of this homomorphism and prove an isomorphism
Hi(R) ~ (R ®z R)™),
where, (W, e) denotes the Weyl invariant for an "untwisted" action of W denoted e. From
this isomorphism we will get an isomorphism
Hy (Z) ~ R,

here RW*) denotes the Z-submdule of R of Weyl-invariant for the e-action.

We begin by the right Hx(Z)-module My (Z) := C.(MU\G/K,Z), on which Hy(Z)
acts from the right by convolution with respect to the normalized measure puy giving K

volume 1.

REMARK I11.10.0.1. We can naturally identify Hy(Q) with the two-sided ideal ey *r
H1(Q) *; ex € H(Q), where ex is the idempotent |K : I| "1 (see Lemma [11.5.0.3). In
a similar way, Mg (Q) can also be naturally identified with M;(Q) *; ex C M;(Q), and
the right action of Hx(Q) will correspond to the right action of ex *; Hi(Q) 1 ex.
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We define the action of R on Mg(Z) in a same way we have defined its action on M;(Z).
This way, M (Z) inherits a structure of an (R, H(Z))-bi-module.

LEMMA II1.10.0.1. The Hx(Z)-module M s free of rank 1 as R-module (with canonical

basis element the spherical vector vy == Lyquk)-

Proof. Using the Iwasawa decomposition G = BK = MUK, one shows that MiUT\G/K ~
M/M; = Ap;. We can also use Remark [11.8.0.2, indeed we have the bijections

MUN\G/K ~ W WX (111.3)
~ (Ay x W) /WE Lemma [11.2.0.2
~ Ay x W/W Wk =—w
~ Ay

This shows that Mg (Z) admits the following Z-basis {v,, x = Lyyu+mi: m € Ay} In
addition, using Lemma [11.8.0.2, one shows that m - vy x = vy, x for any m € Ay, which

ends the proof. O

REMARK I11.10.0.2. The proceeding proof may be applied more generally. We continue
with the notation of Remark 111.5.0.2. We have

MUNG/ Ky ~ W /WE? by (111.3)

~ Ay 3 W/WEF Lemma 111.2.0.2

~ Ay x (W/Wx),
where Wr = WW(WKF) and my is the natural projection W — W (see §111.2). This shows
that Mg, (Z) admits the following Z-basis

{Umw,K]: = 1M1U+mwK_7.-: m & AM,’U) & W/W]_‘}
Moreover, we define a left action of R on Mg, (Z) by convolution in a similar way to the
one introduced in the beginning §111.8. For this action, the proof of Lemma [11.5.0.2 shows,
mutatis mutandis, that for m,m’ € Ay and w € W we have
m' - Umw,Kr = Um/mw,Kr-
Using this formula, we see that the R-module M, (Z) is free of rank |W/Wx|, with a
canonical R-basis given by
{'Uw,K]: = 1M1U+wa: w & W/W]:}

This generalization of Lemma [11.10.0.1 gives a common generalization of two previous
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results: freeness of Mg, (Z) over R with rank size of W (resp. 1) for F and alcove
(resp. a special point). This generalization also gives an alternative proof of the main
theorem of [Lan02, Theorem 1.1], giving the dimension of the space of Kx-fized vectors of

an unramified principal series representation of G.

By the previous lemma, we obtain a Z-algebra homomorphism Hx(Z) — R, which we
denote by SJ\G/[ It is called the Satake transform and is characterized by
ULK X h = S]Gw(h) . ULK,
for all h € Hi(Z). This is actually an embedding of Z-algebras. Indeed, let h € Hx(Z)
such that S§;(h) = 0, hence
V1 *1 h = V1 *1 €K *T h = [K . ]]UI,K X h e M](R),

but since M;(R) is a free H(R)-module, then h = 0. This shows, in particular, that

Hi(Z) is a commutative.

LEMMA I11.10.0.2. Let h be any function in Hi(Z.), then its Satake untwisted transform
18 explicitly given by

S (h): m . h(um)dpy+(u),

where dug+ is the Haar measure on Ut giving 1 on UT N K.

Proof. Let us evaluate vy g *x h = S]\G/[(h) - U1k on both sides on m € M: On the one

hand, we have

(SC.(h) - vy x)(m) = /M S5 (h)(a)vr ke (a™ ' m)dpar, (a)
- /M S5 (h)(@)Lar v+ e (@ m)dpag, (a)
_ /M 85 (1) (@) 1as, (a~ 'm)dpaa, (a)

= [ St @dm o

= Sip(h)(m).

On the second hand we have (For all integration formulas used in the sequel we refer to
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[Car79, §4.1])

(011 %1 ) (m) = / oric(@)h(g ™ m)dpx (9)

G
_ / / on 1 (ORY R~ ) dps (b) b
:/BvLK(b)h(blm)duB(b) (K invariance)

- /M / ouc(an)h(u™ o™ m)duy(a)dpg+ (o)
= /U+ h(u™'m)duy+(w) (v1.x(au) #0 = a € M)
= /U+ h(um)dpg+(u) (U™ is unimodular)

Where, dup (respectively duy+ and dk) is the Haar left invariant measure on B (Resp.
U™ and K) giving volume 1 to BN K (respectively Ut N K and K). O

LEMMA I11.10.0.3. Let h be any function in Hx(Z) and m € M such that'

A(m) := ‘det(AdLie(U+)(m) - IdLie(Uﬂ)‘F 7 0.

Then
d
Ut a/s s
where, the Haar measure ds on S = S(F) is normalized by fM/S % —1.
Proof. See [Car79, Lemma 4.1]. -

REMARK I11.10.0.3. As opposed to [HR10, Remark 10.1.1], the untwisted Satake transform
defined here, is dependent on the choice of the minimal parabolic B which contains M as a
Levi factor. The reason for this dependence is the absence of the factor due to the modulus

function, i.e. in the twisted version, we would have had the factor D(m) = A(m)ég(m)~*/?

which verifies D(nmn™') = D(m) for all m in M and n in N.

DEFINITION I11.10.0.1 (Dot-action). We define a twisted action of W on H(M )| My, R),
by

wer :=m s 6g(m)265(n; mny) Y2 (ny mny,),

for every w € W represented by n,, € NN K, and any r € H(M j) My, R). In particular,
for every m € M,

w e ]_li = 5B(w(m))1/25B<m>_1/21w(mM1)'

21 The function m — det(Adpeu+)(m) — Idpie+)) is polynomial and nonzero. The set of regular
elements is, by definition, the dense set of elements of M which do not annihilate the previous function.
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Thus, upon identifying C.(M )| My, R) with R ®z R, the above dot-action is given on basis
elements mM; € Ay (m € M) as follows

dp(nemnzt)

we ity = (5

and extended R-linearly to R ®z R.

)1/2 w(mMy),

The last formulation shows that the dot-action is indeed well-defined and compatible with
the algebraic structure. Define ¢(m,n) := dg(nmn=")"/255(m)~/2 for every m € M and
any n € N. Note that since the dp is trivial on the compact M; it factors through Ay,
similarly the notation c¢(m,n) factors then through the image of (m,n) in Ay, x W. The

following lemma will be used in the sequel.

LEMMA I11.10.0.4. For any m € M and n € N with tmage w in W, we have

(i) ¢(m.n) = Tacar o) 0a(m) € ¢

(ii) If m € M~ then c(m,n) € ¢".

Proof. (i) Recall that the modulus character 6g: B = MU — ¢%, mu — | det Adpeu+)(m)]
(it is trivial on U')**. But as we have seen in Theorem 11.2.5.1 one has Lie(UT) =
@a€¢,+d(Lie(Ua)). Therefore,

op(mn) =[] dalm)

+
acd’

where o (m) := | det Adpieu,)(m)|. Now, since nU,n~' = Uy q) one also have n(Lie(U,))n ™! =
Lie(Uy(a)), and so
6@ (m) = | det AdLie(Ua)(m)|
= | det AdLie(Uw(a)) (nmn_1)|

= 6w(a)(nmn’1) = Ouw-1(a) (n’lmn).

22Being an absolute value of a determinant on an F-vector space, the modulus function has clearly its
values in ¢Z.
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Accordingly,
—1\1/2
c(m,n) = dp(nmn=1)255(m) "2 = Hoﬁilfjg?:)l/i /
~ acar, dura)(m)?
Haecpjed 0a(m)!/?
 Maeot, @) Oo1@ ()2 Tlacat @) du1(@ (M)
= Haeqﬁred 5a(m)1/2

Haei’;dﬁw(@éd) 5“}71(0‘) (m)1/2

HaECP:;d\w(CD;;d) 50l<m)1/2
=) (Sw—l(a) (m)
Haed)jedmw(cb;ed) Ow=1(-a) (m)

= H 5w*1(o¢) (m)

aei’;dﬂw(@éd)

= 11 00 (m)

a€<1>:edﬂw—1(<1>:;d)

(1) HaECD:;dﬂw@D 12

1/2

we have used for (1): (i) the bijection
wh Py Nw(Py) —— P g Nw™H (D),
(ii) the equalities
Crog N (2hy) = — (Prag N (Preg)) = — (Prea \ w™ ' (D1hg))
and (iii)

I  dam)?= 11 Sup1(ay ()2

acdl \w(@l ) aef(dﬁzd\w—l(‘i:ed))
1
(6—@;6a ) H 5w71(a)(m)_1/2‘
acdf \w (2, ;)
(ii) If m € M~, then one has w(det Adrc(u,)(m)) <0 for any o € @ ;. Hence, c(m,n) €

¢~ for any n € N.

Let (R ®z R)™*) denote the R-submodule of elements invariant under the dot-action. By
(1) Lemma I11.4.0.1 it is clear that (R ®z R)™**) admits the following R-basis

{rm = Z wem = Z c(m,ny)w(m): m € Ay},

wEW/Wm ’wEW/Wm

where, n,, € N N K is a representative for w € W and W,, denotes the isotropy subgroup
of m in W (for the initial action of the Weyl group, not the e-action). Let R(":*) denotes
the Z-submodule generated by the above family {r,,: m € A},}, by (ii) Lemma [11.10.0.4
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this is precisely the submodule of Z[A] of elements invariant under the e-action.
LEMMA I11.10.0.5. The image of S lies in (R @z R)W:*) = H(M ) My, R)W*), i.e.

SG: Hi(Z) —— RW»)

Proof. Let w € W represented by n,, € NNK, Let m € M. By the Lemmas [11.10.0.2 and
[11.10.0.3, it suffices to show that dg(w em) = dg(m) for all m in the dense set of elements
of M which are regular”’ and semi-simple as elements in G and all w € W (represented

by n, € NN K). Therefore,
A(w e m) = c(m, ny,)A(n,mny,") (By definition)
= 0p(m) Y25 5(numn )2 A (nymnt)
= dp(m)~Y255(m) 2 A(m) [Car79, (23)]
=A(m). O
In fact, the lemma above can be strengthened if we enlarge the coefficient ring by the

inverse of ¢:

THEOREM II1.10.0.1. The untwisted Satake transform induces a canonical isomorphism

of R-algebras from Hy(R) to (R @z R)W:).

Proof. Using the Lemmas [11.10.0.1, [T11.10.0.2, I11.10.0.3 and [11.10.0.5, the remaining step
for the proof of the above theorem, is to show that h +— SAG/[(h) is "upper triangular with
respect to some total order, with invertible diagonals". This is proved in [HR10, §10.2| for
the twisted Satake transform with coefficients in C which remains morally valid in our

case as well although we express the total order in a slightly different way.

By Lemma [11.10.0.1, to prove the theorem, it suffices to show that the composition of the

following maps

Hi(R) —— (R®z R)W*) =5 (R®z R)W*) v g

h——mMmM S]\GJ(h) —_ Sﬁ(h) *K U1K

is "upper triangular with respect to some total order, with invertible diagonals". The

proof will be similar to the proof of Theorem [11.8.0.1.

We recall that {h,: = € A}, } forms a Z-basis for H(Z) (§111.6), we also have a R-basis

for (R @z R)W:*) . v, i given by {2 wew/w,, (M nw)Vumy i - m € Ay} Fix an element

23Defined in footnote 21 on 96.



100 CHAPTER III. THE RING U AND HECKE ALGEBRAS

x € Ay, hence

U1,K *K h:): = S]\Cj[(h:p) *K U1,k = Z Cem Z C(m7 nw)vw(m),K
for some unique ¢, ,, € R. Fix m € A}, such that ¢, ,, # 0, then vy g *; x(m) # 0. Now,

since vy g *; h, can be non-zero only on the set M Utz K, thus m € MU xK*", which

implies that UTmK N KxK # 0.

The same proof of Lemma 111.8.0.3 shows that UTmK N KxK # 0 implies m < z in the
Chevalley—Bruhat order: Indeed, using the decomposition K = ey I wl of Proposition
111.7.0.2 and Lemma I11.7.0.2 we see that x € UTmK = U,ewmU T wl, thus x € UTmw,I
for some w, € W, so by Lemma [11.8.0.3 one has mw, < x. By definition of the Chevalley—
Bruhat order if # = s;--- 54, is a reduced word for x then mw, = s;, -  Siy ) is
a subword of z. But by (4) Lemma [I1.4.0.1 one has {(mw,) = £(m) + {(w,), hence
M = S+ Sy, 1€
m < z.

We conclude that c(x,m) = |[UtmK N KzK| = 0, unless x > m. Therefore, since the
monoid A}, is countable and every element x € A}, has only finitely many predecessors

with respect to the Chevalley—Bruhat partial order, there exists a lexicographic (total)

ordering x1, xs, - - - for the elements of A,.

The above discussion shows that the matrix of the transformation h — S]\G/[(h) with respect

to the bases {h,, }3° and {z;}5° is upper triangular. Therefore, we obtain

S]\G/’[(ha:) *1 VLK = Z Cz,m Z C(m7 nw)vw(m),K

meAy,: z>m weW /Wi,
We also remark that the diagonals ¢, .c(z,1) = |UTzK N Kz K|, using the facts: = € A},

K={U"NnK)Mi(U NK),z(U"NK)z ' c(UtNK)and 2" (U NK)x C (U NK)
together with UTU~ N N = {1}, we deduce that

Cow = |(UTNK)aM (U™ NK)| = |KzK]| € ¢~.
This observation shows that the triangular matrix (czm), e A, is indeed invertible once
we extend the scalars from Z to R, and this shows that the homomorphism A — Sﬁ(h)

induce a isomorphism of R-algebras
Hi(R) —— (R@z R)W*). O

COROLLARY I11.10.0.1. The untwisted Satake homomorphism induces an isomorphism

24We abuse notation, and use the letter m for a class in A}, and for a representative in M ™.
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of Zi-modules between

Hic(Z) = R,

Proof. By the Theorem [11.10.0.1, It suffices to show that the image of Hy(Z) by the
untwisted Satake homomorphism is precisely R i.e. that each r,,, m € A}, is in the

image of S$(H(Z)). This claim is proven in [HV15, §7.14]%. O

REMARK II1.10.0.4. Consider the C-linear map ng: R ®z7 C —— R ®y C, given on
C-basis elements m € Ay by

1/2

np:m®c—— dp(m)'*me c.

Observe that for any m € Ay

me( Y wm) = > d(wm) P uwm) =sm)? Y wem.

’LUGW/W"L 'LUEW/W"L wEW/Wm
Hence, np: R ®z7 C —— R ®z C is actually an isomorphism of C-algebras with W -

action where the target is endowed with the e-action (Definition [11.10.0.1) and the source
with the usual action. Let S%: H(C) — R @z C the "classical” untwisted Satake
homomorphism [HR10, §9.2], then we have

nBOSG:SZCf@id@. O

II1.11 The center of the Iwahori—-Hecke algebra

DErFINITION II1.11.0.1. For each m € A};, define

Zm = ®Bern(rm> S GBern((R ®Z R)(W7.)) C HI(R)7
where, W e m denotes the orbit of m under the twisted action of the Weyl group. We call

the elements z,, the untwisted Bernstein functions.

We have

Zm = Z C';)m’ = Z C<m7 nw)éw(m)a
m/eWem weW/Wp,
where, W,,, denotes the isotropy subgroup of m in W.

ProprosITION II1.11.0.1. The Bernstein map @Bem induces an embedding of algebras

(R @z R)W*) «—— Z (H(R)),

25We point the reader to the fact that definition we use for dominance is opposed to the one used by
[HV15], their translation map is equal to —v (see §3.2 loc. cit.).
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i.e. for each m € A}, the Twahori-Hecke operator z,, lies in the center of Hi(R).

Proof. As we have seen in corollary 111.9.0.1, the Iwahori-Hecke algebra H;(R) has the
following R-basis {@m ®1y: m € Apyr,w € W} Thus, to show that z,, lies in the center
for all m € A}, it suffices (Remark 111.9.0.4) to show that it commutes with the elements

i for all w € W. We formulate the different steps of the proof as lemmas:

LEMMA II1.11.0.1. The (R ®z R)-submodule (R ®z R) - (v1 *1 (D tw)) C Mi(R) is free
of rank 1.

Proof. This is a consequence of Lemma [I1.10.0.1, since ), 4, = 1x by Proposition

111.7.0.1. L

LEMMA II1.11.0.2. For any m € Ay, we have Z,, := zy, x; 1 € Hi(R) and accordingly

[K . I]].K *1 Zm = Zm

Proof. We have

(T Z m') - vy ;1 € RV ‘v € M(R) %5 e
m/'eWem
so by Theorem [11.10.0.1, since z,, € R("**), there exists a unique z,, € Hx(R) verifying

( Z m') vy xp 1g = (v1 %1 1) %K Zp = [K ¢ I]_l(vl xr 1g) %1 Zm.
m/'eWem
Now, since M;(R) is a free H;(R)-module of rank 1, we must have

Zm X1 ]-K = [K . I]_llK *7 Zm = Zm € HK(R)
In particular, [K : I|1k %7 Z,, = 1k %k Zm = Zn. O
LEMMA II1.11.0.3. For any m € M and any reflection s € S:

em,s = em *r is - Z.s *r (;)wom € (;)Bern(R) X7z R.

Proof. Let m € M. We want to apply [Rosl5, Proposition 5.4.2]. Since in loc. cit. the
notation ©,, does not equal our ©,,, we first compare the two to make things clear. Let

my, my € M~ verifying m = m; — mo, hence

[Imyl - 1]'? ~ .
= Wzml *p [Ros15, Definition 5.3.1]
) 1/2
B(m I Lemma [11.7.0.4
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We have for every reflexion s € S
@m,s L= @m *r is - Z.s *r @som

= @m X7 Z'S - Z's X C<m7 S)@S(m)

dp(s(m))? -

———1Oy(m)
63(7”)2

= Gp(m) 7+ (5(m) 36,0 x1 iy — iy 1 G5(s(m)) 36,01 )

:@m*IZs_Zs*I

1
= QT2n (@m k1 ls — bg *] ®s(m)) .
Therefore, applying [Ros15, Proposition 5.4.2| shows that

Qm,s € HI(R> N ®Bern(R) ®Z Z[qi%] C ®Bern(R) ®Z R. O
Let s € S and m € Ay, then by Lemma [11.11.0.3

@zm,s = 2y KT is - is k1 Zm = E @wom *r Z's - is *r @swom S @Bern(R) X7z R

’LUEW/W'm
Let us compute the following,
S Z by = Zm *1 bs ¥1 L — 1 %1 2m ¥ 1 (Proposition I11.7.0.1)
weW
=[Is] : 1|Zy —is *1 Zm (1s % 1gg = [Is] : I|1k)
= [Is] : 12y, — [Is] : I]ig %5 (1 %1 Zm) (Lemma [11.11.0.2)

=[Is] : |2, — [Is] : [)*1g %1 Z,,
=0 (Lemma [11.11.0.2).
Thus, by Lemma [11.11.0.1, we see that sz,s = Zm %115 — s ¥1 2, = 0. Finally, we deduce

the desired commutativity for any w = s1 - - sy by induction on the length ¢(w) in the

Coxeter system (W,S). O

THEOREM II1.11.0.1. The set {z,, : m € Ay} forms a basis for the R-module Z (H(R)).

Proof. We intend to use [Ros15, Proposition 6.3.1]. Rostami’s proof which is heavily based
on [Rosl6], is valid only for C-coefficients, and to our knowledge, it can be adapted to
the best to give the same statement for Q-coefficients. The untwisted definition of QBern

allows to obtain the desired result with R-coeflicients using the following trick:

Let f € Z (H(R)), by Rostami’s [Ros15, Proposition 6.3.1], we can decompose it as

f= Z Ctmm (cpm € Q)

meA,,

such that, ¢s,,, # 0 for only a finite set of m € Jy C A};. We know by (2) of Lemma
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[11.4.0.1, that for any m € J; there exists a m, € A}, such that

w(m) +mo € Ay,
for all w € W. Hence, for all m € J;

2 = Z c(m,nw)@w(m)

weW/Wp,
=iyl Y (MmN )iw(m)em. Proposition 111.9.0.1.
weW/Wp,
This shows that
mo *¥1 | = Zcfm Z (1, Ty () -
mGJf wEW/Wm

The function on the left hand side is a R-valued function, so

crmc(m, ny) = (im, *1 ) (w(m) +mo) € R, (Ym € Jy,Vw € W).
Therefore ¢y, € R, since by Lemma [11.10.0.4, we have c¢(m,n,,) € ¢™. O

COROLLARY III.11.0.1. The homomorphism

@Bern: (R ®Z R)(W7.) — Z (%I(R)) )

1s an isomorphism of R-algebras.

II1.12 Compatibility of the untwisted Satake and un-

twisted Bernstein isomorphisms

THEOREM I11.12.0.1. The Satake and Bernstein untwisted isomorphisms are compatible,

1.€., the following diagram is commutative:

Hi(R)
A SAC;}
| RWS) @z R = H(M [ My, R))
- (';)Bcrn
Z (Hi(R))

Proof. To our knowledge the first proof of the compatibility between the Satake and
Bernstein isomorphism, i.e. commutativity of the diagram above is due to J.-F. Dat
[Dat99, §3|. In loc. cit. a complete proof is provided only for split reductive groups. Here,

we propose a different proof, following the one given for split groups in [HKP10, §4.6]: Let
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h € Hi(R), we have

vl*lh:vl*le[(*[h (GK*[h:h)
= [K : I|(v; %1 ex) xx h (passing from *; to *)
= [K : I)S$(R) - (vy %1 ek) (Definition of S$7)

=K I](SAG/I(h) FU1) k1 €K
= [K : I)(v1 %1 O e (S$i(R))) *1 ex (Definition of Opern)
= vy %7 Oper 0 S$H(R) %7 1

Hence, h:@BemoS]\G/[(h) x; 1 = 15 %5 @BemoSﬁ(h). O]

REMARK I11.12.0.1. The convolution products in Hyx(R) and H;(R) are not the same,
and the normalized vertical map in Theorem [11.12.0.1 is indeed a morphism of algebras.
Write the vertical map Z (Hi(R)) — Hx(R): h + h. Let hy,hy € Z (H;(R)), we have

hl X7 hg = hl XK hg, since:

1

(hl * 1K) XK (hg * 1[() = mhl *r € XK hQ *r e
1

= mhl X7 hg X7 ]-K X7 ]-K

:(hl *]h,Q) X7 ]-K D

Consequently, combing the above theorem with Corollary [11.10.0.1 we get

COROLLARY I11.12.0.1. The Satake and Bernstein untwisted Z.-isomorphisms are com-

patible, i.e., the following diagram (of Zi-modules) is commutative:

Hx(Z)
A~ Sg
—XT lK ~ R(VVv.)
- eBcrn
®Bern (R(W.))

REMARK 111.12.0.2. The Z-algebra Opeen(RW*)) C Z(H;(R)) may not be in H;(Z).

II1.13 The ring of U-operators

We introduce here two special commutative subrings of H;(R), but before this, let us look

at the homomorphism @Bem from another viewpoint.



106 CHAPTER III. THE RING U AND HECKE ALGEBRAS

The group Ay is clearly the Grothendieck group of the monoid Aj,”", therefore

Homping (R, H;(R)) ~ Homeroup(Anr, Hi(R)™)
~ Homumonoid (A3, Hi(R)™).
We have seen that for each m € Aj,, the Iwahori-Hecke operator i,, is invertible in
H;(R). By proposition [11.9.0.1, we see that the untwisted Bernstein map Oper €
Hompging(R, H(R)) is precisely the homomorphism of rings that corresponds to the

homomorphism of monoids

(m —> Zm) S HomMonoid(A]T/jv HI(R) X)

via the above natural isomorphisms.

DEFINITION 111.13.0.1. Define Ut := Opn(R), this is equivalently the ring generated
by the elements i, and i,' for all m € Ay, (see Proposition I11.9.0.1). Define also the

ring of U-operators to be

U := Opm(Z[Ay,]) C Hi(Z).
THEOREM I11.13.0.1. The subring @Bem(R(W7‘)) [U*] of Hi(R), spanned by Ut and

OBern (RW®), is integral over Opem(RW*) C Z (H;(R)).

Proof. Let m € R, it suffices to consider the polynomial

Pu(X) = [ (X~ Opera(w @ m)) € Opeea(RM)[X],

weW/Wp,
where, W, denotes the isotropy subgroup of m in W. This ends the proof, since by
Corollary 111.11.0.1 we have Opem(RW*) C Z (H1(R)). O

REMARK I11.13.0.1. Note that by definition P,, is the minimal polynomaial annihilating
O

I11.14 A U-structure on Z|G/K]

Recall that Proposition [11.5.0.1 gives another interpretation of the Iwahori-Hecke al-
gebra H;(Z), namely being naturally isomorphic to the (opposite) ring of intertwiners

EndgZ[G/I] of the right regular representation Z[G/I] of G associated to I:

M1(Z) —— Enda(Z[G/1])])*r",

261t is universal for homomorphisms of the monoid A}, into groups.



II1.14 A U-structure on Z|G/ K] 107

here, the superscript opp indicates the opposite ring. Likewise, there is a natural isomor-
phism of rings
Hi(Z) —— Endge)(Z[G/K])])"?,

here, we may drop the superscript "opp", since these rings are commutative.

We would like the ring U to act on C.(G/K,Z), although it lives in #;(Z). More precisely,

we will construct an homomorphism of rings

U —— Endg(Z[G/K))])*.

I11.14.1 Section

The inclusion I C K induces a surjective map

C.(G/I1,Z) — C.(G/K,Z), f 1.

The same inclusion induces also natural embeddings
C.(G/K,7Z) —— C.(G/I,7Z), Hi(Z) —— H,(Z).

The composition of the above maps

C(G/K,Z) —— C.(G/I,Z) — C.(G/K,Z),
is multiplication by [K : I]. We fix a section of the natural projection G/I — G/K, as
follows:

s:G/K —— B/(BNK) — G/I,

the bijectivity of the first map follows from the Iwasawa decomposition G = BK (Proposi-
tion [11.7.0.3), while the injectivity of the second map follows from the computation of the

kernel of the natural projection B — G/I in the following lemma:

LEMMA 111.14.1.1. We have BN I = BN K.

Proof. On the one hand, applying [HV15, (ii) §6.8] *" we get:

BNK=(MNK)U"NK)and BNI=(MnI)(U"NI).
On the other hand, by corollary 11.3.9.2 we have UT N K = IT™ = U+t NI, and by Lemma
11.3.9.2 we have M N K = M; = M N I. This shows the lemma. O

27Take the set Q in loc. cit. to be the fixed special vertex a. first, and then to be the alcove a.
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The above section induces a map, also denoted by s

s: C.(G/K,Z) —— C.(G/I,7Z),
defined on the basis functions by 1,5 — 1,7, for all b € B. The map s, is actually a
retraction of — x; 1x: C.(G/I,7Z) — C.(G/K,Z), indeed for all b € B we have s(1yx) *;
1 = 1, %7 15 = 1k, that is the composition
C.(G/K,7Z) —— C.(G]1,Z) — C.(G/K,Z)
is the identity.

I11.14.2 Pairing

We define an "excursion pairing"

C.G/K,Z) x H(Z)—— C(G/K,Z),
as follows:

reo f:=(s(x)* f)*5 1k.
This is clearly bilinear in both variables. For x = 1,5 and f = 1,7, we get (using Lemma

111.5.0.1)

rof =1y *xlg = E Lyigr *1 1 = E Ly,
€l/INglg—1! i€l/INglg—1!
where, we have used Igl = Ucr/ingrg—1191.

LEMMA I11.14.2.1. (U action on Z|G/K]|) The "excursion pairing” when restricted to U

defines a right action

CAG/K,Z) x U —— C(G/K,Z).

Proof. We need to verify, that for all ry = m,M;, 7y = maM; € A}, we have

(]-gK L] ’irl) L] ’ir2 = ]-gK [ ] (irl X7 irg) = 19K ® ir1+r2-

Recall that ©, =1, for any » € A}, and the braid relation

2.7"1 *r im = 7:7’1—‘1-7’27 r1,T9 € A& in H[(Z) (1114)
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We have for ? € {1,2} (using the Iwahori factorization of I)
Imol = I M I mo1
= ITme My (m5 T ms) I (Lemma [11.7.0.3)

= [er?[

o /
= l—lb/el‘*/m?I"'m;lb m?[

now the left hand side of (II1.4) is given by (see Example 111.5.0.1)

Upy K[ bpy = E Yy 1 *1 E Ly, 1
ye[l+/mil+mi?) VE[I+ /maltmy !
= E Lo vimar
VeIt /miltm
v e[t /maltmy )
reusing (I11.1) we get
E Yy brimar = E LYyrmymar

vellt/Itnmiltm?)
Ve[t /maltmy )

Let b € B be any representative of g K, thus

b eIt /(mima) It (mima)~1]

(Lgrc @ ip,) ®iry, = ((Lps *14py) *1 11c) @y
On the other hand we also have

Ly *p e, = Ly x1 L1

= Loprm,1 (Lemma [11.5.0.1)

= E Loy, 1

Ve[l+ /mil+my

109

(111.5)

Note that we have specified representatives b’ in It to ensure that the resulting bb'm; stay
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in B. Therefore,

(L ®iy,) @0y, = E Loy, *1 1 | @ i

ye[I+/miI+mi?]

= E Lo i | ® 0y

ye[I+/miI+mi?]

= E Loy k ® iy,

ve[l+/mil+mi?

= E Yoo mibrmar *1 1k
ve[rt /miltm?]
Ve[t /maltmy

= Z Loprimymar *1 1k (use (I11.5))

b eIt /(mima) It (mima)~1]

=1k ® iy gy, L

LEMMA 111.14.2.2. The action of U on C.(G/K,Z) is faithful.

Proof. For any my,---m, € A, distinct, and s1,--- , s, € Z, we have

1g *1 Zsz Un, ® 1) = 1 %5 <28111*12m> *r g
= 1g *; <2811m1> xr 1k

i

B |[F‘|m,]m_1|1

But, by the Cartan decomp031t10n (Proposition 111.4.0.1) we know that the (h,,,); are

leZ.K (Lemma [11.5.0.1).

linearly independent since all m; belongs to A},. Therefore, if we assume that
Zsiumi olx =1k,

1 IfmlzleA]Q,

then we must have

S; =

0 Ifm;#1€A5,
COROLLARY I11.14.2.1. The action of U on C.(G/K,Z) induces an embedding of rings

U —— EndpC.(G/K,Z)°* C EndyC.(G/K, 7).

Proof. The B-equivariance is a straightforward consequence of the formula

1ok @iy = Z Lopm, ks
b eIt /mItm—1]
for b € B and m € M~. The injectivity was proven in Lemma [11.14.2.2. O]
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LEMMA I11.14.2.3. For every m € Ay, let P, = U} x L, be the largest parabolic
subgroup of G relative to which m is anti-dominant. In this case, P, is a semi-standard
parabolic subgroup containing the minimal parabolic subgroup B. Set U,, for the subring
of U corresponding to the monoid N - m, i.e. (ip.m: n € N). Then ¢ induces a embedding
of rings

U,, — Endp, C.(G/K,Z)°* C EndpC.(G/K, Z)°.

Proof. The P,,-equivariance is a consequence of (i) the Iwasawa decomposition G = PK
(Proposition I11.7.0.3) and (ii) the formula

1 ety = § Lppmi

pE[l+/mI+m=1]

Lemma V.2.3.2
= E , Lpprmk -

p' E[ULNTT /U mI+m—1]

[]

REMARK I11.14.2.1. Let h € Z(H(Z)), h = h*; 1, and v € U. If h and u are # 1,
we have

(Lyr *rc h) @ u # (1,5 @ u) *p¢ h.
In particular, we see that the action of U viewed in Endp C.(G/K,Z) does not commute

with the action of Endg C.(G/ K, Z).

REMARK I11.14.2.2. Here, the only properties of K that we have used are: I C K and

BNI=BnNK. This holds for many parahoric subgroups, and for larger groups.

I11.14.3 Integrality

THEOREM I11.14.3.1. For every u € U C EndgC.(G/K,Z)°", there exists a monic
polynomial Q,(X) = hyX* € EndgC.(G/K,Z)[X]

> g =0, in EndpC.(G/K, Z)[X).

Proof. Let w € U C H;(Z) and 1, € C.(G/K, R) with b € B. By Theorem 111.13.0.1,
there exist a monic polynomial P,(X) = >, X*hy € O Bern (RW*)[X] (set h, = 1;, the
unit in H;(R)) having u as a root. Set hy, := hy *; 1 € Hy(Z) (Corollary 111.12.0.1). We
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have

Z<1bK [} U,k) XK }_lk = Z(le [ uk) XK (hk X7 ]-K)

k k

=|K|™ Z(le o uF) s (hy 1 1)
!

= [K: ]]_1 Z((lbl *J Uk) s L) *p (hy #5 1)

= [K : I]il]_b[ X7 <Zuk X hk) X7 ].K X7 ].K
k

= 1pr *1 Pu(u) *r 1k

=0€C.(G/K,Z).
This holds for all b € B, therefore:

> hpouf =0€EndpC(G/K, Z),
with hy € Ende C(G/K,Z). O

I11.14.4 Example GL;

Let us make some verification by hand for G = GLyz,. Let T' be the diagonal matrices, B

the Borel subgroup of upper triangular matrices, K the maximal open compact subgroup

* ok ?
G(Z,) and I the corresponding Iwahori subgroup C K . Set g, =
Pk ok 1

for any ? € Z,. We have

wi= | (" "= |] ar

a€Zyp /2y 1 a€Zyp | pZyp
Thus, for any b € B

1o @ Lrgor = (Lpr %7 Lpgor) #7 1x

= Z 1bgaI *r 1

a€Zyp/pZy

= Z Loy x

a€Zy [/ pZyp
therefore,

1ok ® 11gor = 1ok %k 1) — Log ke,
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7
where, T, = 14,k and g5 := . Hence,
p

]'bK hd ]‘?gol = (1bK L4 ]-Igol) L4 1Ig0[

= Z Lyg. i | @ 17gr

a€Zy /P2y

= Z (Log,xc ® Lrger)

a€Zyp/pZLyp

= E , Log i %K Tp — Log,q K

a€Zyp/pZy
= (Lox ® L1go1) *x T — PLyprc
= (Lox ® 1ygo1) *x T, — plok *K S
where, S, = 1,k € C.(G/K,Z). where, we have used the fact that ¢,¢(K = pK for any
a € Z,. In conclusion, we see that the e-action defines an operator u € Endgp C.(G/ K, Z)

corresponding to 1;4,; € H;(Z) such that

u® — Tyu+ pS, =0,
where this time, 7, € Endgq C.(G/K,Z) (resp. S, € Endyq C.(G/K, 7)) is the Hecke
operator corresponding to K goK (resp. KgogyK)

I11.15 fIVJ-operatorS for K aka Geometric U-operators

In this section we will show how the whole above story adapts when we replace the
parahoric subgroups K and I by the G'-fixators™ K and I of a, and a respectively. We
will then define the corresponding ring of U-operators, this ring is interesting because it

is "visible" in the sense that it appears as a ring of geometric operators on the extended

building of G (see §V.1.3).

I11.15.1 Digression on Gl-stabilizers

To every facet in the extended building F x Vg, we may associate an open compact
subgroup closely related to the parahoric subgroup Kz (definition 11.3.9.1), this is K F the
G-fixator of the facet F x Vg C B(G, F')ext. By definition of the action of G on the affine

28Recall that we use the word "fixator" to indicate pointwise stabilizers.
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space Vg we see that [?; = PrN G ie. it is also the G'-fixators of the facet F.

Assume now that the facet verifies a, € F C @, which is equivalent to I € Kr C K.
Consider the composition map
Ry K- RJK.

By [Ros15, Lemma 4.2.1|, on the one hand this map is surjective since K contains I, on

the other hand it induces a group isomorphism
Kr/Kr~K/K,
since K N K = K. Since also [K : K|[K : Kf] = [K : Kf][Kr : K], so
[K: K7 =[K: K7
By [HR10, Proposition 11.1.4], we have an inclusion M; C K and it induces a bijection
MY/M, ~ K/K. Using [HR10, Proposition 8.0.1] we see that M* = I N M hence
M'=KrNM, M* C K7 and
Kr= MK

LEMMA II1.15.1.1. The open compact subgroups I?; admits the following factorization

Kr=UfUzUfM".

Proof. This is a consequence of three ingredients: the equality K 7 = M'Kx, the Iwahori
factorization for K as in Proposition [1.3.9.2 and finally the fact that M*' normalizes UF

and Ur. O

LEMMA II1.15.1.2. The inclusion M — G induces an equality My = M N G1 and
accordingly an inclusion
(AM)tor — (AG)tor ;

compatible with ky; and Kq.

Proof. By definition we have M N G; C M;. The other inclusion follows from

Lemma 11.3.9

My FEE M A K € M NGy,
Consider the composition of the two following maps
M —— G* » GGy .
But M N Gy = M, which shows that the induced map (Apr)ior — (Ag)tor 18 an

inclusion.
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REMARK II1.15.1.1. As we have seen in §11.5.9.2, the torsion parts are precisely (Apr)or =
M*Y/M; and (Ag)ior = G'/G1, hence applying the above lemma shows that My = M N G;.

REMARK II1.15.1.2. By the whole above discussion we see that,

(AG)tor =0 Gl = Gl

ﬂ

(App)ior = 0 == M'! = M, ——= Kr = Kr.

where F C B(G, F)eq is any facet containing in its closure a,. For example, if G is
unramified or semi-simple simply connected then Ay is torsion free so K=K (see [HR10,

Corollaries 11.1.2. € 11.1.7.]).

I11.15.2 Averaging homomorphisms

REMARK II1.15.2.1. From now on, we will use the nomenclature ’geometric’, to differen-
tiate between the context of parahorics and G*-stabilizers, e.q. Hz(Z) will be called the

geometric spherical Hecke algebra, H+(Z) the geometric Iwahori-Hecke algebra

We have a bijection

NG/ ~ Wg.
where W,g is the extended affine Weyl group N /MY ~ A, x W (§11.3.8), which is also
bijective to the double coset Wy = MU \G/I (proof similar to Lemma 111.8.0.1 and
Remark 111.8.0.2)

REMARK II1.15.2.2. Since a, is special, the canonical injection

NNK/MNK —W
15 an tsomorphism. Therefore, we may and will assume when needed that every representa-
tive in N of an element w € W = N/M lies in [?, such a representative is determined up

to multiplication by M* = M N K.
Likewise, we have a bijection
K\G/K ~ Ay, = M~ /M".
The above two bijections yield R-basis for the geometric Iwahori-Hecke (resp. geometric

Hecke algebras):

(i == 1; 7w € Waff}, (resp. {hm = 1z = meAy,}).
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Set
Giors = | (Mar)ior| = |T/1] = |K /K|, Ry := R ®z Z[gtL].

LEMMA I11.15.2.1. The "averaging” map v: Hi(Ry) — H3(R:) defined on basis elements

1
1191*%% Z 1rgnr

[ : ]] he(AIM)tor
18 a surjective homomorphism of algebras.

Proof. An Ry basis of H3(R;) is given by elements 1y, 7 for all g =mw € Ay x W. We

have [ = Une(Ang)ior P, hence™
Imwl = Un’ he (Ao LRMWR'T
= Un/ he (A poor IR0 R wh'T m~thm =h"e€ M!
= Up' hre(Aag)io Lwh” ' T Lemma [11.15.2.2
= Une(An )iox IMwhlI.

Using the decomposition G = U wea, xwIm'w'l, one shows that for any fixed pair

mw € Ay, X W the map Apf)ior O h — Imwhl is injective. Hence,

(1 ) ! 1 1
L\ LmwI) = 77—~ Imwhl — L70T"
A ImwlI
|( M)tor’ hG(A]W)tor
For the rest we refer to [Ros15, Proposition 4.2.3, Lemma 5.1.1 & Remark 5.1.2]. n

LEMMA I11.15.2.2. The Weyl group W acts trivially on (Apr)or = M /M.

Proof. Let w € W with representative n,, € N N K, so for any m € M"' we have

w(mM,) = nymn, M,
but since M! is normal in N we have n,mn_ ' € M'. We have already seen in §I11.15.1
that the inclusion M! < K induces the following surjective map
M' - K/K
with kernel M' N K = M. Hence n,mn,'K = n,mK, but m normalizes K (since K is
normal in K), so
nwmn;lK =mm nymK = mK,

this shows that mM; = n,mn_'M; and proves the lemma. O

29We abuse notation and use the same letters for classes and representatives, which is not harmful for
our computations.
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I11.15.3 Geometric untwisted homomorphisms

All of what we have proved previously in the case (I, K'), can be proven mutatis mutandis,

with slight modifications for the pair (I, K).

I11.15.3.1 Geometric untwisted Bernstein homomorphism

For any ring R, define as in §111.8 the H3(R)-module M3 R) = C.(M'UT\G/I,R). There
is a natural identification® between R[A,,] and the relative Hecke algebra C.(M J M', R)
that allows us to endow the H3(R)-module M7 R) with a left R[A,,|-action as follows:
define for every ¢ € M3(R) and r € R[A,,]:

rw@wzﬁfwwmwmwmm<w6G>

here, duysi(a) is the Haar measure on M giving M?! volume 1.

There is a canonical bijection between the extended affine Weyl group Wag = N/M' ~
Ay x W. Therefore, the set {v, :=1,,1,4,7: ¢ € Waff} gives an R-basis for the module
M;(R). Tt is straightforward to adapt the proof of Proposition I11.8.0.1 and get the rules:

For every w € W and m € A,;, we have

L vp *71 = Uy,
2. M+ Uy = Uynaos

3. Uy *7 oy = Uppaoy

Therefore, on the one hand the R[A,,]-module is a free module of rank |[W|, with canonical
basis {v,,, w € W}, on the other hand it is free of rank 1 as a H;(R) (proof similar to
corollary 111.8.0.2) with canonical generator v;. This yields an embedding of R-algebras

(the geometric untwisted Bernstein homomoprhism)
Operm: R — H#(R)
-
characterized by the property: m - v, = vy *7 ém, for every m € R[A,;]. This induces a

decomposition

R[Ay] ® HYR) —— HUR),

30This is a consequence of the fact that M' is the unique maximal compact subgroup of M.
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where H(R) := C.(K J I, R), we thus obtain an R-basis for H:(R)

{6, ¥700: M € Ay w € W
Using the above discussion, we can express explicitly the geometric untwisted Bernstein

homomorphism, indeed for any m € A,,, then
O = iy 7 (imy) 7,
for any my,my € A, satisfying m = m; — mo. Using the averaging map of Lemma
[11.15.2.1, we see that for any m € A,; we have
L(Om) = tlimy) *7 t(imy) ™" = Ouimy,
here «(m) (by abuse of notation) also denotes the image of m by the canonical surjection

Ay — Ay, and it preserves dominance by definition (Compare with [Rosl5, Lemma

5.3.1]).

I11.15.3.2 Geometric untwisted Bernstein homomorphism

Identically to §111.10, one can consider the bi-(R[A ], H(R))-module
Mz(R) = C(M'U\G/K, R).
It is free of rank 1 as a R[A,;]-module with canonical generator U1 x = 1,1+, this yields
a geometric untwisted Satake homomorphism
Sfir: Hig(R) = R[Ay.

REMARK II1.15.3.1. We can naturally identify Hz(Q) with the two-sided ideal e *x
Hi(Q) *x e C Hir(Q), where e is the idempotent K : K|_11F( (see Lemma I11.5.0.3).
In a similar way, Mz(Q) can also be naturally identified with Mg (Q) *; ez C Mg (Q),

and the right action of ’Hf{(Q) will correspond to the right action of ej *k Hi(Q) *x e
Computations similar to Lemma [11.10.0.2 shows that

55 - ()
THEOREM 1I1.15.3.1. The Satake transform induces a canonical isomorphism of R-

algebras from Hz(R) to R[A,,]MW).

|HI~<(R)

Proof. This theorem is of course no surprise [Sat63], or [Car79]. But now that we are here,

let us derive it from what we have proven for the special maximal parahoric subgroup K.

By Remark I11.15.3.1 above, identify H(Q) with ez *x Hi(Q) *x ez C Hi(Q). A direct
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application of Theorem [11.10.0.1 shows then that the transform S]\G/[ induces a canonical
isomorphism of R-algebras between H z(R) and its image in C.(M J/ My, R)W*)| this latter
image is precisely C.(M J M*, R)"*) by an argument similar to the proof of Theorem
[T1.10.0.1. Accordingly, we get a commutative diagram

G
He(R) —2 s C(M ) MY, R)W) —= 5 RIA, W)

L, [ °

G

Hic(R) —2 s C(M ) My, R)W® —= 5 R[A,] W)

We forget the R-algebra structure, we still get a commutative diagram of Z-modules

SG
Hi(R) —2s R[A,]"

l l

>G
SA{

Hi(R) ——=— R[Ay]™

THEOREM I11.15.3.2. The Satake transform induces a canonical isomorphism of Z.-
modules

Hip(Z) = Z]A)
where, Z[A]"*) denotes the Zi-module of elements of Z[A] that are W -invariant.

Proof. Initially, using the previous isomorphism theorem one shows the claim for the

Z-module structure, then deduce that it must respect the Z-algebra structure. O

REMARK II1.15.3.2. Using the ‘averaging’ map, we can invert the vertical maps in the

above diagram and still get a commutative diagram
>G

Heo(R) —2 s C(M ) MY, )W) —= 5 RIA,,JW)

~

I I I

G
S]\l

Hi(R) —2— Co(M ) My, R)W®) —=— R[A]|W
here, the right vertical arrow is the map induced by the natural quotient map Ay — Ay,
and the middle vertical arrow is the corresponding one, it is given by

1
1mM1 — W Z 1mhM1-
M jtor he(AI\J)tor

Recall that since M, and M' are kernels, they are normal in M, so we have M'mM*' =

mM?"' and MimM, = mMj.
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I11.15.4 Compatibility

DEFINITION II1.15.4.1. For each m € A,,, define

zm = (ijBern ( Z m,) © éBern(Z[AM](W’.)) - HT(R)7

m/'eWem

where, W e m denotes the orbit of m under the twisted action of the Weyl group. We call

the elements z,, the geometric untwisted Bernstein functions.

PRrRoPOSITION II1.15.4.1. The homomorphism

éBern: R[AM](W.) —_— Z (HT(R)) )

1s an isomorphism of R-algebras.
Proof. Combine [Ros15, Remark 5.1.2 & Lemma 6.1.1] and [Lus89, Proposition 3.11]. [

We then get to a compatibility result similar to Theorem [11.12.0.1:

THEOREM I11.15.4.1. The Satake and Bernstein untwisted geometric isomorphisms are

compatible in the sense that the following diagram is commutative:

Hi(R
N \
—*fllz. (W.) ~ ]\4-//]\4'1 )( 7.)
/
Z (My(R

COROLLARY I11.15.4.1. The Satake and Bernstein untwisted Zi-isomorphisms are com-

patible, i.e., the following diagram (of Z-modules) is commutative:

H;?

\

—%71 (W')

ITK
%

®Bern (Z [A
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I11.15.5 Geometric f[vJ-operators

Using the fact that ICcKand BNK =BnI=MI", we get section of the natural
projection G/I — G/K, as follows:
5:G/K —=- B/(BNK) — G/I.
this induces a map,
5. C.(G/K,Z) — C(G/1,2),
defined on the basis functions by 1,z + 1,7, for all b € B. The map s is a retraction of

—%71z: C(G/I,R) — C.(G/K,R).

REMARK II1.15.5.1. On the level of the extended building, the injection G/l? — G/:f
induces a B-equivariant embedding of the G-orbit of (a.,0) into the G-orbit of (a,0).

Define U and U™ to be the rings éBBm(Z[AM) and éBem(Z[A u]) respectively. In a similar
way to what we have done in §[11.14.2, define an "excursion pairing"

C.(G/K,R) x HyR) —— C.(G/K,R),
as follows:

ve fi=(s(x)* f)+;1g.

When restricted to @*, this pairing defines a ring right action
CAG/K,Z) x U —— C(G/K,Z).

Same arguments for the proofs of Corollary [11.14.2.1 and Theorem [11.13.0.1 yield

THEOREM I11.15.5.1. The subring Open(Z[A,,]"V*) [ﬁ*] of H7(R) is integral over
@Bem(Z[AM](W”)), and the action of U on CC(G/I?, Z) induces an embedding of rings

U —— EndgC.(G/K, 7).
COROLLARY I11.15.5.1. For every u € U C EndgC.(G/K,Z)°, there exists a monic
polynomial Q. (X) =Y hpX* € EndeCo(G/K, Z)[X]

Zﬁkuk =0, in EndpC.(G/K,Z).






CHAPTER IV

SEED RELATIONS AND HECKE
POLYNOMIALS

Assume for this section that G is unramified (quasi-split over F' and split over an unramified
extension of F'), which is equivalent to the existence of a reductive Op-model G of G. As
noted in Remark [11.15.1.2, in this situation one has K= K, ie. K is the special maximal
open compact subgroup fixing the vertex a,. Assume further that K is the hyperspecial

maximal open compact subgroup G(Op).

By [GD70b, XXVI 7.15| and Lang’s theorem [Lan56|, G is quasi-split over Op: there is
a Borel pair T C B C G. We may and will assume that S extends to the maximal split
Op-subtorus S of T. Set T C B for the base change Tr C Br, respectively. Let U™ be

the unipotent radical of B.

The Bruhat-Tits translation homomorphism vy: N: — (X.(S) ®z R) x W we have fixed

in Proposition [1.3.2.1 is normalized such that

vy(w?) = =\ (see Lemma 11.3.2.2).

With the notation of the previous chapters, we have Zg(S) = T = T (this centralizer

123
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was denoted by M before) and as in Remark [11.15.1.2 *:

T\ =T" = T(Or) = ker vy = ker x7.

It is possible to embed X, (S) into T in two natural ways. Our convention will be to

identify A € X,(S) with @w”. Using this identification we have

Ap :=T/T) ~ X.(T)r ~ X.(S).
Let ®* be the set of B-positive roots, the one that appears in Lie(B). We say that
A € X,(S) is B-dominant if (\,a) > 0 for all & € ®*. Let C C A denotes the closed
vectorial chamber corresponding to the Borel B. Thus, an element ¢ = w” := \(w) for
A € X,(S) is antidominant (as defined in §I11.4), if and only if A € X,(S) NC, if and only

if A is B-dominant, since

(vn(t), ) = —(\, a) <0, Vo € @7,

For any extension E of I, let M(FE) be the set of G(E)-conjugacy classes of (algebraic
group) cocharacters G,,, g — Gg. The Cartan decomposition (Proposition [11.4.0.1) yields
the following identification

M(F) ~ K\G/K,
given by [\] — K@K, for A € X,(S) is a representative of [\] € M(F).

IV.1 Langlands dual group

Let Ty, = Gal(F*"/F) ~ Gal(kr/kr). As before, we let ¢ € T, be the arithmetic
Frobenius of F. The group G split over F** [GD70b, XXVI 7.15]. We consider a
Langlands dual group of G with respect to I',,. This group sits in the following short

exact sequence

1 y G » LG > T > 1,

and every choice of épinglage (]§, T, (eq))” yields a splitting of the above exact sequence.

We fix a I'y,-invariant épinglage [Kot84b, §1] thus 'G = G x Tyn.

!Note that in this unramified case, T splits over the completion of F*" denoted previously by L.
Thus, the Kottwitz homomorphism defined in §[1.3.9.2 takes the simpler form

kr: T(L) = X.(T).

2Here, for each simple root a of ’f‘, €, 18 a nonzero element of the root vector space Lie((A})a.
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The T'y,-equivariant isomorphism X,(T) ~ X*(T) induces a canonical identification
between the I',,-groups W (G, T) and the Weyl group W(a, T), and an identification
between the X, (S) = X,.(T)r and X “(S). The inclusion S < T gives an inclusion
X,(S) — X,.(T), and this yields a short exact sequence

1 —— T y T , S y 1,

showing that S ~ 'T‘/(l — U)T. Therefore,

~

T = Spec(C[X™(T)]) = Spec(C[X.(T))),
S = Spec(C[X. (S)]) Spec(C[Ar]) = Spec (C(T(F) / T(Or),C)) .
In particular, S(C) = Hom(X,(T)p,C*). The above fixed canonical identification
W(G#,T) ~ W(a, T), lets W(G, S) operates on S by duality. The space §/W(G, S)

has the structure of a smooth affine C-scheme whose coordinate ring is C[X,(S)]" (9.

S/W(G,8) = Spec (C[X.(8)]" () = Spec (C[A]" () .
Using the twisted Satake isomorphism of Theorem [11.10.0.1 we obtain

S/W(G,S) = Spec (Hx(C)). (IV.1)

IV.2 Unramified representations and unramified L-parameters

Let Wr C I',,, whose elements induce an integral power of the Frobenius automorphism
o: x + x? on the algebraic closure of the residue field. The valuation val: Wg — 7. sends
an element 1) € Wr to the power of ¢ it induces, e.g val(c) = 1. Define the "Weyl form"
of the Langlands group to be LG := G x Wpg C G. The embedding Z — Wy given by

1 — o defines a semidirect product G x Z and we get a homomorphism

fUG—>(§xZ.

DEFINITION 1V.2.0.1. An unramified L-parameter is a homomorphism ¢: Wr — LG

that verifies the following properties:

1. The composition Wg L iG — Wr s the identity.

2. For any w € Wp, ¢(w) is semisimple.

3. The composition Wg LN LG — GxZ factors through val.

Set @,,(G) for the set of equivalence’ classes of unramified L-parameters.

3Two L-parameters are equivalent if they are a—conjugate.
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The set of L-parameters is in bijection with the set of semisimple elements of the form
gxo € LG. Therefore, @,,(G) identifies with the set of semisimple elements of G modulo

o-conjugation.

DEFINITION 1V.2.0.2. An unramified representation of G(F') is a homomorphism of

groups w: G(F) — GL(V') where V is a C-vector space verifying the following conditions:

1. m 1s irreducible.

2. The stabilizer of any vector v € V' is an open subgroups of G(F).

3. For any open subgroup O C G(F), the vector subspace VO of O-fized vectors is finite
dimensional.

4. The subspace VX is nonzero.

Set I, (G) for the set of equivalence' classes of unramified representations of G(F).

PROPOSITION IV.2.0.1. There is a natural bijection

D, (G) ~ S(C)/W(G,S) ~ I, (G).

Proof. In the proof of [BR94, Proposition 1.12.1], one shows first the above proposition
for the torus T:

@, (T) ~ S(C) ~ I, (T),
then deduce it for G using [Bor79, Proposition 6.7|. O

REMARK 1V.2.0.1. The above proposition gives an alternative characterization of the

twisted Satake homomorphism. Consider the following injective homormophism
Hi(C) ——— {IL(G) — C}
hg = 1kgx > (= Tr(m(hg)|vi)),
where, V' is given a structure of a left Hy (C)-module defined by f -v for f € Hk(C) and
v €V by the formula

fou= /G £(9)(x(9) - v)dux (g).

By Proposition ['V.2.0.1 we get the following commutative diagram

Hi(C) » C(T(F) | T(OF),C)

i: -

Cllln(G)] —— C[ (TGS «—— C[I1,,(T)]. O

4Two representations (m1,V1) and (ma, V2) are equivalent if there exists an isomorphism V; — V5
sending m; to o.
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IV.3 The Hecke polynomial

Let ¢ € M(F) and p, € X,.(T) be the unique Bz-dominant cocharacter of T#. Both, ¢
and p, have the same field of definition, a finite unramified extension F'(¢) C F"" of F.
Set d = [F'(c) : F] and let

Normp(/p ¢ := | H T(pe)] € M(F)

T€Gal(F(c)/F)
be the norm of ¢’. We may assume that for some representative (and hence for all) of the

conjugacy class Normp(),r ¢ takes values in the torus T. The conjugacy class ¢ € M(F(c))
determines a Weyl orbit of a character of '/I\‘, in which there is a unique zi, € X *(’T‘) that is

dominant with respect to the Borel subgroup B.

Let (r,,V) be a representation of “(Gp(,)) (unique up to isomorphism) satisfying the

conditions:

e The restriction of r. to G is irreducible with highest weight ji,.
e For every admissible invariant splitting of “(Gp()) the subgroup I'?, of (G ()

acts trivially on the highest weight space of r..
Fix an invariant admissible splitting “(Gp()) = GxI? .

DEFINITION 1V.3.0.1 (The Hecke polynomial). For every g € é, consider the following
polynomial

Pg(X) = det (X — ¢“*ir (g x 0)%)).
By varying g, the coefficients of Pg,. are viewed as elements of the algebra of regular

functions of @un(G).

Now, combining Proposition [V.2.0.1 and (IV.1) we have

., (G) ~ Spec(Hk(C)). (IV.2)
Accordingly, let Hg, € Hx(C)[X] be the Hecke polynomial corresponding to Pg . via
(IV.2) (compare with [BR94, §6]).

5Tt is straightforward that the conjugacy class Norm F(c)/F ¢ does not depend on the choice of the
representative .
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IV.4 Explicit untwisted Satake transform

Let po € Normp(),/r ¢ be the cocharacter of T which is B-dominant, i.e. @ is antidominant.
Let L be the centralizer of u in G. Let P be the largest parabolic subgroup of G relative
to which y is dominant, L is a Levi factor of P and U}, the unipotent radical of P. By
definition we have T C L and U}, C U*. Set K7 =?N K for any ? € {P, L,U} }. Denote
by fi = lkworx € Hir(R) (vesp. gy = lonk, € Co(L ) Ki, R), resp. hy) = lowp €
C.(T ) T1, R) ~ R[Ar] the characteristic function of the double coset corresponding to [u].
Let p: G,. — G be the simply connected covering of the derived group of G, and let S,
be the unique maximal F-split torus of G, such that p(Ss.) C S. The map p defines a
homomorphism from X, (S,.) to X,.(S). We are interested in the set

Yp(p) ={ve X.(S): p—velm(X.(Ss)) and u > wv for all w € W(G,S)}.

REMARK 1V.4.0.1. The above W -invariant sets of weights plays a prominent role in
representation theory and they are called "saturated sets of weights”. Moreover, we have
(see [Hum72, 13.4 Exercise] and Bourbaki’s [Bou6S8, Chapter VI, Exercises of §1 and §2/)
that

Er(p) = |_| WA

AEXL(S)NC: A=p
where < denotes the partial order on X,(S)NC defined by

A= V@V—A:Znaav,na € Z>p.
We have the following explicit description of the untwisted Satake homomorphism

PRrRoOPOSITION 1V .4.0.1. Write

SEfu) = Y W) dowpy €CT J T1,R),

veXp (1)
and the coefficients {c(v)} are positive powers of q and verifies

clwr) = ¢~ De(v) for all w € W(G,S),
with c(p) = 1.

Proof. The untwisted Satake isomorphism (Theorem [11.10.0.1) ensures that

Sig(f[u}) € (AT 7z R)(W’.)7
which shows c(v)¢®") = c(w(p))g®*®) for all w € W(G,S). The fact that c(v) > 0 if
and only v € Xp(u) follows by [Kot84a, Lemma 2.3.7 (a)] for the "only if" and [Rap00]
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for the "if". Finally, the coefficient ¢(u) = 1 is obtained by [Kot84a, Lemma 2.3.7 (b)]
using Remark [11.10.0.4. O

IV.5 Seed relations and U-operators

Using the fixed épinglage, we can consider a I'y,, -equivariant embedding *T = T x Lup —
LG. The composition

LT e L@ <" GL(V) 225 [X] |

is independent of all fixed choices. The restriction of r. to T yields a weight space

decomposition

v= P W

AEX g (1)

We have

SIQ(PG,c) = det (X - qdwc’p>rt|L(TF(c>) ((?>4 U)d)> € C[¢un(T)]W(G7S)-
Define the twisted restriction of r. to be the morphism of schemes
rr: H(Tpe) = T x T4 — GL(V)

given on C-points by

rr(1 30 = r(1x o) and rp(t % 1) - vy = ¢ PV - vy (IV.3)
for vy € V) for all A € ¥(u.). The homomorphism r7 is not a homomorphism of groups
but maps conjugacy classes to conjugacy classes and it is defined to ensure, using Remark
[11.10.0.4 and (IV.3), that

SIQ(PG,c) =TMnB©° SIQ(PG,J

= det (X — q Wiy ((?N o)) € C[®,,(T)).

REMARK IV.5.0.1. Note that our choice of the twisted representation rr depends crucially

on the normalization of the isomorphism X.(S) ~ Ar. We have adopted the following

isomorphism \ — @*. Using Remark [11.10.0./ and dg(w™)/? = ¢~ M) we see that

n: )\»—)q_<’\7r”>

X,(S) ®z C s X.(S) ®yz C

’:lh—)w)‘Tl l:

. 1/2
AT ®Z C n: tTi—6(t)/ 2tTh N AT ®Z (D

As opposed to [Wed00, Proposition 2.7|, we insist on the fact that we do not assume p to

be minuscule in the following proposition.
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ProprosITION [V.5.0.1. 1. Let ¥ < T denotes the mazimal split torus of Gr(o
containing the image of ., let EF(C) C B(Gpy, F(¢))ext e the closed vectorial
chamber corresponding to the Borel Bp(). We have

deg(Hg,) > > #H(W(G,S")N) = #%p ()

AEX (STNNC ey : A= pie

2. The twisted restriction rp of ¢ to L(TF(C)) 18 1somorphic to a direct sum

v= P %
ZF(C)(IU‘C)
where V5 is one-dimensional with generator vs for any A € W(G, T)[i, such that

~

rp(t x o) “Updlr-1) Ry = q_<”’)‘>/):(;f\) -3 (IV.4)

Proof. We will just imitate the proof of [Wed00, (2) Proposition 2.7| but without requiring

14 to be minuscule.

1. Fix a Borel pair (’T‘, ]§) of G and let it. be the dominant character of T corresponding
to the conjugacy classe ¢. By definition of the Hecke polynomial, its degree is the
dimension of the representation r. which is irreducible with highest weight 1. as a
representation of G. By remark [V.4.0.1, the only weights of r. are the elements
Lls W (G, ’T)X where the disjoint union is taken over dominant wights A =< Ji. (here
< is the usual partial order on dominant weights X*(T)%™). By definition of the
dual group, we then have

|| W(G, T)A = | | W (G, STO)A

XeX*(T)dom : X<7i, AEX(STOYNC ey A=pte
= Xp(e) (fe)-

2. The twisted restriction ¢ of 7. to (T F(c)) is isomorphic to a direct sum

V= | ] V;

XEX*(T)dOm: Xjﬂc
and the highest weight space V. is one-dimensional with generator v;.. Accordingly,

V5 is one-dimensional for any N W((A}, ’/I\‘)ﬁc The conjugacy class ¢ being defined
over F(c), we see that (0™) stabilizes W(G,T)ﬂc Choose for each classe Z €

W (G, T)fic/(c%) a representative Az € Z and a vector vy, € V5, Define

UpraRy) = (1 x ™) - v3,, for1<r<ry:= min{s: 0" Az = A\ }.
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Therefore, taking r = —1 gives

o~ o~

ro(t X o?) - Updtr—11(3,) = Tt ¥ 1) - 05,

= PVR() vy, by (IV.3).0

LEMMA IV.5.0.1. We have (S§Hg.)(1) =0 in Co(T J T1, R).

Proof. The conjugacy classe [u] (resp. ¢) gave rise to a dominant character i (resp. i) of
T and
= (i) ot (),
To prove the lemma, it suffices to show that
det (X — g™ Prr|y. ((0 % 1)?)) € C[Pyn(T)][X]
has fi(?) as a root for all 7 € T. Identify ®,,,(T) with the set of o-conjugacy classes {t} of

elements ¢ € T(C). For any v € Vi, we have
qd<ﬂt7P>TT((o- X Bd) D = qd<.“‘up>rT (O'd X (?O'(%\) . O'd_1<%\>)) )

Prop. l:\'f).l).l ﬁc (%\0_<%\) o gd71<%\>) -

We will show now the following "seed relation"

THEOREM [V.5.0.1 (Seed relation). The operator ®u = ion € U is a right root of the
Hecke polynomial Hg . in the non-commutatif R-algebra Endp(C.(G/K, R)).

Proof. First of all, since p is dominant with respect to B, we have w* € T, thus G)u e U.
Under the identifications Ay ~ X, (T)p ~ X*(’T)F the element w17} € A} corresponds

to the function t — f(t).

Recall that by Lemma 111.14.2.3 ©,, € EndpC.(G J K,Z) and the coefficients of Hg, are
in Hix(R) ~ EndeC.(G /) K, R), thus

HG’C(@“) S EndeC(G // K, R)
Using Theorem 111.12.0.1, we see that Opem 0 STHg, € Z(H;(R))[X]. Write Hg, =
S he X and by = Opem 0 SE(hy) € Z(Hi(R)). So hy %1 1x = 1x *; by, = hg. We
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then have for any p € P

T

lpk @ HGJ(G)M) = Z(lpK ¢ 62) K T

k=1

-

(lpI X7 @Z) X7 ]-K XK hk

B
Il
—

. 1 _
(1p1 X7 @Z) X7 (le X7 ]-K X7 hk)

M-

=<l

—_

= (1p1 *[@ﬁ) X7 ]-K*I]_Zk
k=

= 1,7 *s (Z GZ *1 hk) *r g

k=1
= 1,7 % (Z Ry %1 @Z) _
k=1
= 110[ *r ((@Bern OSJC“:HG,c)(QM)> 1 1K

= 1,7 *7 OBern <(57G‘HG,C)(WMT1)> *r 1

Lemma [V.5.0.1
= 0.

—_

We have shown

Hg(©,) =) hyo©f =0¢€Endp(C.(G/K, R)). O
k=1

REMARK 1V.5.0.2. If u. is minuscule, then Xp(p.) = W(Gx, T) e and accordingly the
degree of the Hecke polynomial is

deg(Ha o) = [W(Gg, T) ] -
In particular, deg(Hg,) > deg(P,) = |W/W,| = |[W(G,S) p|, where P, is the minimal
polynomial of ©,, in Z(H(R)) (see proof of Theorem I11.15.0.1). Therefore, if G is a split

group, . minuscule and E = F, then

HG7[M:P“*] ]—K [l

IV.6 Bultel’s annihilation relation

In this last section we will show how Theorem 1V.5.0.1 lifts (generalizes) a previously

known result due to Biltel [Biil97, 1.2.11].
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Let Sp: C.(P/Kp,Q) — C.(L/Kp,Q) be the canonical homomorphism given by

= <m = [ ram)du <n>> ,
U P
where duU; is the left-invariant Haar measure giving KU; volume 1. Both @-modules
C.(P/Kp,Q) and C.(L/K,Q) are actually Q-algebras (by Lemma [11.5.0.1) and the
transform Sp is an algebra homomorphism. Indeed, let f, g € C.(P/Kp,Q) then

Sef wir 00) = [ ([ Sladata™ )i (@)

= /+/ +f(nm)g(m—ln—lup)d,uU;(n)duL(m)duU;(U)
v JoJug

- /U; (/L Jnm)d; (”)> ( /U s g(m™ pu)dp (u)> dyur,(m)

= Sp(f) *xp Sp(9) ()

where, dup denotes the left invariant Haar measure giving Kp measure 1.

We also consider the map |p sending any function on G to its restriction to P. Using the
Iwasawa decomposition G = PK (Proposition 111.7.0.3) one shows that this is actually an

algebra homomorphism

lp: Hi(R) —— Co(P | Kp, R),
and a |p-linear module homomorphism
lp: C.(G/K,R) —— C.(P/Kp, R).
Using the Iwasawa decomposition G = PK (Proposition 111.7.0.3).

LEMMA IV.6.0.1. Letp € P and m € L, then:

Lk|p = 1pk, and Sf(lpr) = ‘mKU;milyU;;lmKL'

Proof. The first equality is a direct consequence of the Iwasawa decomposition. For the
second it is deduced from the fact that Kp = KL.KU; given in Proposition [11.7.0.3:
SE s )(@) = [ Loy (w0l (w)
v
The integrand is nonzero if and only if ua € mKp = mKj, - Ky, but since LN Up ={1},
we have

u € aKU;a_l and a € mKp,

which is equivalent to u € mK U;m_l and w € mK . Therefore,

St (Lniy) = |mKU;m71|U;]‘mKL' 0
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Observe that if mKU+m_1 C K+ then
P P

1 1
Koo — - .
[m ug™ |U; [KU+ : mKU+m_1] [Kp: mKpm™!]
P P

LEMMA 1V.6.0.2. We have a following commutative diagram of R-algebras

Hie(R) —2 (L J K1, R)

- Js

R[AT](W’.) [N R[AT](WL’.)

where, Wy, denotes the relative Weyl group of L (which is equal to the subgroup W, of
elements in W fixing ). The lowest horizontal arrow is the inclusion of W-invariants

mto Wi -tnvariants.

Proof. By definition of the parabolic P, multiplication in G gives a bijection

UtnL) U5 = U". (IV.5)
For any m € L and h € Hy(R)
SE(h)(m) :/ h(um)dpy+(u) Lemma [11.10.0.2
U+
:/ / h(uruem)dpis (ur) dp+ar (uz) by (IV.5)
vy Ju+tnL

- /UML (/U; h(u1u2m)d,uU; (U1)> dpg+nr(usg)
- /U+mL Sg (h) (ugm)dpy+ i, (up)

= 8¢ 0 St (h)(m),
Therefore, S& = Sk o S which confirm the claimed commutativity of the above diagram.

Finally, the vertical maps are isomorphisms by Theorem [11.10.0.1. O

Let us reformulate the above untwisted Satake homomorphism SLG as a homomorphism of

endomorphism rings. We have a commutative diagram:

Sp

Hyx(R) — 5 C(P ) Kp,R) < s C.(L ) K1, R)
| H

EndeC(G/K, R) 4 EndpCu(G/K, R) B End,Cu(L/Ky1, R) % End,Co(L/Ky, R).

~

Let us first say few words about the homomorphisms (1) and (2):

(1) We have used the Iwasawa decomposition G = PK to identify G/K ~ P/Kp for

the middle vertical arrow, accordinly the homomorphism |p induces the canonical
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injection (1):
End¢C.(G/K, R) —— EndpC.(G/K, R).
(2) We have a homomorphism of rings

EndpC.(G/K,R) —— EndpC.(Up\G/K, R)

fr—————— (UpgK — 1I(f(9K)))
where IT is the natural obvious map R[G/K] — R[UA\G/K]. But since P = LU},
we actually have EndpC.(U3\G/K, R) = End;C.(U;\G/K, R).
Using the Iwasawa decomposition again G = U} LK, we get a bijection
Thus, the homomorphism (2) is the composition
EndpC.(G/K, R) —— End,C(U\G/K, R) —= End,C.(L/K}, R).
(3) The homomorphism (3) is the twist by the modulus function .

LEMMA IV.6.0.3. The operator ©,, = izu lives in EndpC.(G/K, R) and its image by the

composition (3) o (2) is precisely g,

Proof. Let us first compute the image of the operator ©,, = imu by the map (2). We have

for all a € L (see Lemma [11.14.2.3)

Gu(lU;aK) = Z 1Ujgap/qu
P EULNIT /UL Nwr It —H]
=#UpNIT/UZN wufrw_“)lU;aqu
Hence (by Lemma V.2.3.2) the image of ©, € EndpC.(G/K, R) by (2) is
#(IH @' Tr oo™ ) gy = Sp(w ") g = ¢ 9.
Finally, upon applying (3) shows that the image of ©, by the composition (3) o (2) is
9] S EHdLCC(L/KL, R) ]

Biiltel’s annihilation result we have mentioned earlier is:
COROLLARY [1V.6.0.1 (Biiltel’s annihilation). We have

St (He(gp) =0 € Co(L /| K, R).

Biiltel’s result as stated in [Wed00, §2.9] requires the conjugacy class ¢ to be minuscule. We
will derive this corollary from Theorem [V.5.0.1, showing that the assumption "minuscule"

is superfluous.
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Proof. By definition of the "excursion" pairing §[11.14.2 and the proof of Lemma [V.6.0.3,

we see that for all p € P:
0 Theorem:l\'.B.().l (HG&(@N) o 1p[{) |P
= Ly *Kp Lkpanicp *10p (Hao)|p-
This shows that
(Heo)lp(1kponx,) =0,
and consequently we conclude
S&(Ha o) (g3) = Sp (Ha ) lp(Lkponi,))

=0. O
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The goal of this chapter is to translate the purely group theoretic U operators into a more
combinatorial fashion, by describing their induced action on the extended building. This
will provide a new class of geometric operators on the set of special vertices justifying why
U-operators may be thought of as a conceptual generalization of the successor operators

for trees with a marked end.

We continue with the notation adopted in §11.3 and §/11: We have previously associated
to the fixed maximal split torus S an apartment A in the reduced building B,.q and
an apartment Aq; = A X Vg in the extended building Bex (§11.3.7). We have also
fixed an alcove a C A, and a special point a, € a. Recall that K denotes the special
maximal parahoric subgroup associated to the special point a,, and K its fixator (pointwise
stabilizer) in G'. Likewise, I denotes the Iwahori subgroup associated to the alcove a, and

I its fixator (pointwise stabilizer) in G*.

Since we will be manipulating objects in the reduced and extended buildings, we will use

subscript [,eq and [y to indicate in which situation we are.

Likewise, to every maximal split torus S’ of G is naturally attached an (extended) affine
apartment Ae (S') = Area(S’) X Vi, endowed with an action of Ng(S') such that Zg(S’)
yields precisely the set of affine translations of A (S’). Set W (S') for the relative Weyl
group Ng(S')/ Zg(S'). Now, since the set of maximal split tori is in bijection with the
set of affine apartments, we will omit indicating the corresponding torus, and only write

/ / /
ot and W'

red’

V.1 Retractions and {/-operators

V.1.1 Preliminaries

DEFINITION V.1.1.1. An element g € G 1is said to be strongly type-preserving if: For
each triplet (F, AL, w), where F is a facet contained in an apartment AL, and w € Wig,
for which

(i) g-F Cc A, and (ii) (wog) - F =F,
then the element w o g fives pointwise the closure F. Set Gy, for the set of strongly

type-preserving elements in G. A subgroup H C Gy, of strongly type-preserving elements
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is said to be strongly transitive if it acts transitively on all pairs (o' x Vg, AL..), where

ext
.AI

it C Bext s an apartment and o' x Vi C AL, is an alcove.

For more on these types of automorphisms on buildings we refer to [Rou09].

PRrRoOPOSITION V.1.1.1. The subgroup Gy, of strongly type preserving elements of Bext i

equal to G1 = ker kg, and its action on By s also strongly transitive.

Proof. According to [Rou09, 11.10], the subgroup of G consisting of strongly type preserving
automorphisms of By is the group generated by V]Q}ext(Waﬁ) "and the root groups U, for
a € ®. This is equal to the subgroup G*# generated by parahoric subgroups of G [Vig16,
§3.9], but by |Ric16, Lemma 1.3| there is an equality G* = ;. Finally, G; is indeed

strongly transitive on Bey as shown in [BT72, Corollaire 2.2.6]. O

REMARK V.1.1.1. The action of G on Bey s strongly transitive but non type-preserving
in general. One may think of G1\Bexs as the "universal closed alcove” on which G /G acts
faithfully: it is a (commutative) group of automorphisms of the universal closed alcove,
with a translation part, given by vg, and a "rotational part”, finite, given by the torsion

subgroup G'/G.

V.1.2 Iwahori subgroups and retractions

For any minimal facet {a} x Vig € Bext, there is an apartment Aey o, C Bext containing

a x Vg and {a} x Vg (see Proposition 11.3.6.1 (4)).

LEMMA V.1.2.1. For any point a € Bex there is an apartment Aext o containing {a} x Vg
and a (along, then, with the whole facet of a). (i) There is a unique isometry ¢: Aext.a —
Aext fizing a x V. (ii) The image ¢(a) does not depend on the choice of Aext.a. Denote

this image by 4., «(a).

Proof. (i) (Existence) By Proposition V.1.1.1, there exists ¢ € G sending the pair
(Aext.as @ X Vi) to (Aext, a X Vz) and fixing pointwise a x V.

1

(Uniqueness) If ¢: Aext.a — Aext 1S @ second isomorphism, then ¢pog~" is an isometric

automorphism of A fixing @ x Vg, but any automorphism of B, that fixes a

I'The map UN,ext is defined above Remark 11.3.7.1.
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chamber is the identity. Moreover, being an isometry, ¢ fixes a x Vg if and only if it

fixes the whole intersection Aext N Aext,a-

(ii) Let A’

ext,a

be another apartment containing a x Vg and a. Consider the following

(possibly non-commutative) diagram

Aext ,a —> Aext

o~

ext ,a

where all maps are (unique) isomorphism fixing @ x Vi;. The uniqueness of (i) implies
¢ = ¢ o ¢”, which shows that the above diagram is commutative. In addition, the

map ¢" being an isometry, must fix @ € Aext o N AL, , for all v € Vi Hence:

ext,a

¢(a) = ¢' 0 ¢"(a) = ¢'(a).
This proves that ¢(a) does not depend on the chosen Aeyt q- O

REMARK V.1.2.1. By the above lemma, for any point (axv) C AX Vg = Aexy contained in
some apartment Aexi o that also contains a x Vi, there is a unique isomorphism ¢: Aextq —

Aext fizing a X V. In particular ¢ fixes the component Vg, thus

" dea((0,0)) = (raq(a),v),

for some retraction map 44 Brea — A for the reduced building.

DEFINITION V.1.2.1. The map 74, a: Bext — Aext (1€Sp. T44) defined by lemma V.1.2.1

is called the retraction onto Aey based at a X Vg, (resp. A based at a).

In the following lemma, we interpret the retraction r 4, o using the Iwahori subgroup.

LEMMA V.1.2.2. For any (a,v) € Aext,

T.:\ixt,a((a> U)) = f (a,v) =1I- (a,v),

The fibers of the retraction v, « are exactly the T-orbits on Bey.

REMARK V.1.2.2. Using Remark V.1.2.1, we see that for any (a,v) € Aey where a € A

and v € Vg, we have
since I € I C G* = kervg.

Proof. Let a be any point in the apartment A, a’ € B,eq such that r44(a’) = a. According

to Proposition V.1.1.1, the subgroup G has a strongly transitive action on By, thus also
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on Beq. Hence there exists ¢ € G that sends the ordered pair (¢, a) to the pair (a,a).
In particular g - a = a, but since G, is strongly type-preserving it must fixe pointwise a,

hence g € I.

The isomorphism ¢g-1: g - Aexi — Aext fixes the alcove a x V. Thus, by lemma V.1.2.1,
we have

(0,0) = (6-1(0"),0) = Tasmal(@,0)), Vo € Vi
Conversely, any (a/,v) = g - (a,v) clearly retracts to (r44(a),v) = ra.,.a(a,v). Thus
r;}a(a) =1 -a, and r;tclxt’a(a,v) = I - (a,v), for any v € V. Finally, the equality
I-(a,v) =1-(a,v) follows from I = M'I (see §I11.15.1). O

The following figure describes the case of a tree (e.g., the SLy or U(3) case). The blue

vertices in the closure of a (resp. a magenta) alcove are all in the same [-orbit.

2,

/O

Qo
a

§

V.1.3 Geometric U-operators

Set
ot =M - (a0,0) ={ay, = (ao +vy(m),vg(m)) : Vm € M} C Acxt.

We define an "excursion pairing"

M x Z]AS

ext

] 5 Z[ngt]v (m’ am’) > U
where U, a,, is defined to be the formal sum of vertices appearing in the fiber

T;\elxmm“a(m ) am/) = r;lelxmm’.a(amm’)'
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We will see below how the restriction of the above pairing to the semigroup M~ defines a

left action M~ x Z[A2,] — Z[B?

ext ext

|. By Lemma V.1.2.2, we have

Uy = Lirq - Gy

=m/Im'~'mm’ - (a.,0)
Q' Im - (a,v)
D i rtm - (as,0) (Lemma I11.7.0.3),
For (1), although m,m’ may not commute as elements of M, they do commute modulo
M, c I c I which gives m'~'mm’'K = mK. The next line (2) also requires m € M,
which guarantees I* N mKm~1=mI*m~1. Hence’,

Uty = m/ Z i Qe

i€t /mI+tm—1
Note that the summation above is by definition i,,,a;. This proves the following

LEMMA V.1.3.1. Letm e M~ and m' € M. We have

U =m' - U,a,.

In other words, the operator U, is M -invariant.

Now, we extend the action of U, to the set

(o]
B ext

=G - (a,,0) = B - (a,,0),
the latter equality holds thanks to the Iwasawa decomposition G = BK = B K.

LEMMA V.1.3.2. For each g € G, set a, := g - (a.,0)’. The intersection

o
Aext

+
NUT -a,

consists of a single’ vertex {am,} for some my € M, unique modulo M*t.

Proof. The intersection is nonempty by the decomposition G = UTM K. Suppose that

there exist two m,m’ € M such that Uta,, = Uta,,. Let u € U such that u - a,, = a,y,

1

Le. U-m = ay = m'm™" - ay,, hence mm'~'u € Py, }, using the decomposition (see

propositions [1.3.4.1 and 11.3.6.1)

P{m~ao} = N{m~ao}U{m~ao} = N{m~ao}U{m~ao}U{+m-ao}‘

Write (mm'~')u = nu_u, for some n € Niyq.y and uy € U But NNUTU~ = {1}

{m-ao}’

2Recall that mITm~! C I'T again by Lemma I11.7.0.3.
3This is compatible with our previous notation a,, = m - (a.,0) for m € M.
4Actually, the extended apartment Ay is a fundamental domain for the action of Ut on Bexs.
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[BT65, 5.15], hence

mm'~' =n € Niygoy and u = uy € U

{m-ao}’

and so in the reduced building a,,, = ua,, = a,,. This proves the lemma.

1

An alternative argument: For each u € U™, the restriction of the action of u™! to

U+ Aoy 18 the unique isomorphism (uniqueness resembles the proof of Lemma V.1.2.1)
mapping u - Aey t0 Aexe and fixing their intersection pointwise. In particular, it fixes

Ay = U~ Ay € U+ Aoyt N Aext, thus a,, = a,,. O

LEMMA V.1.3.3. Let me M~, g€ G and uy € U verifying ag = uyay,,. Define

Unag := g - Upam, € 7B

This definition does not depend on the chosen u, € UT.

Proof. By Lemma V.1.3.1, we have

Unag = ugmg - Upay
Let u € UT be another element such that a, = um, - (a.,0). Therefore, by propositions

[1.3.4.1 and 11.3.6.1

mytutumg € P NG NUY =UL , =17,
But U,,(a.,0) = I - a,,, hence
Umag = UgMy * u’m(am 0) = umyg - u’m(ao; 0) ]

COROLLARY V.1.3.1. For every m € M~, we have

Z/{m € Endz[B]Z[ngt] .

Proof. This is a straightforward consequence of Lemmas V.1.3.1 and V.1.3.3. m

REMARK V.1.3.1. By definition, the map

M — EndZ[B}Z[Bsxt]7 m+— U,

factorizes through the quotient Ay, == M~ /M' C Apr/(Aar)tor, Since we have Uy, (ao,0) =
Im - (a0,0) and M C I (§1I1.15.1).

LEMMA V.1.3.4. For every m,m’ € A,;, we have

Uy 0 Upyy = z/{m—l—m’-

In particular, the operators U,, and U,,» commute.
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Proof. Here we will abuse notation and use the same letter for a class in A, and a

representative for it in M.

Recall that the Iwasawa decomposition G = BK yields B2

°+ = B+ (a,0). Thus, by the
B-equivariance of the operators U,, and U,,, it suffices to verify U,, o Uya; = Upipray
for m,m’ € A;;. We thus have

Z/{m OCUpya1 = Z/{m Z i,m/ : (ao, 0)

velt/m'Ttm/—1

= Z i'm' Uy, - (as,0) (B-equivariance)

iel+ /m/ [+m/—1

= E E i'm'im - (a,, 0)
delt/m'Itm/~lielt /mItm—1!
Since m, m’ are chosen in M ~, we have

m'mI™m™'m't cmItm™t c It
so0 if $,8" C I'" is a set of representatives for I'™/mITm™" resp. I'T/m'IT™m/~! | then
S"={i'm'im"~':i' €S and i € S}

is a set of representatives for I /m'mI*(m'm)~1. Therefore,

o Uy ae = Z i" oy = Uy (a0,0). O

NGSII
REMARK V.1.3.2. Note that the definition of the above operators {U,: m € Ay} is
independent from the alcove a and the special point a,. Actually, such operators should be
imagined (should be defined in the first place) as "successor” operators with respect to a

point lying in the building at infinity.

DEFINITION V.1.3.1. Define i C Endyp Z[Bg] to be the ring generated by the operators
{Unm: m € Ay}
COROLLARY V.1.3.2. The following map is a natural isomorphism of rings

Z[Ay) —— U, m ——— Up,.

Proof. We claim that the kernel of the map M~ — U given by m + U,, is precisely M*.

Indeed, we have:

1. The only points of the apartment where the alcove based retraction r 4, o has trivial
fiber (i.e. reduced to the point itself) is the closure of the alcove a, and this true by
Lemma V.1.2.2.
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2. The closure of the alcove a x Vi contains a single point of M~ - (a,,0), namely (ag, 0)

itself. Indeed, as in Example [1.3.4.1 we know that

a={a€Aw(G,S):0<ala—a,) <n,' forall a €} }.

But M~ ={m € M: a(v(m) + a,) <0, Ya € &}, thus

an (M- (a0, 0)) = {(ac, 0)}

Combining the above claim with Lemma V.1.3.4 shows the corollary. [

LEMMA V.1.3.5. The geometric action of U on Z[BZ] is faithful.

Proof. This is morally similar to the proof of Lemma [11.14.2.2. Let my,--- ,m, € A},
distinct and sq,--- s, € Z. We then have

IN(-ZsiUmial :Zsif(-fami

= Zsi (I?mlf?) Say
Hence, if K - > Silhmar = ay, by Cartan decomposition (Proposition [11.4.0.1), one must

have

1 IfmzzleA]T@
S; =

Combining Lemmas V.1.3.1, V.1.3.4 and V.1.3.5 we get a natural embedding of rings

U —— EndZ[B]Z[BO ] (Vl)

ext

THEOREM V.1.3.1. The subring U C Endyp) Z[Bg] is integral over Endyq) Z[Bg]-

Proof. We have by definition of K

G/K ~ B2, ~ B, x 7%
where dy s, := rk(Z,sp) is the split rank of the maximal split central torus (§I1.3.7). The
homomorphism of rings U= 6Bem(Z[Am) ~ U given on basis elements by U,, — Gy =
15 7 for all m € A}, is an isomorphism (See I11.15.5). This identification between U and

U is compatible with their corresponding actions on C.(G/K, R) and R[B?

°¢). Indeed, on

the one hand we have

Una, = E iy

ielt/mItm—1
and on the other hand we have by definition of the excursion pairing of §I11.15.5:

lpein= Y Lz

ielt/mItm—1
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The following diagram is commutative:

~

ﬁopp »'«fl Z[AJ_W] Cor. ;41.342 Z/{
Thrm. 111.1345.1J: O [(\;1)
Endp C.(G/K,Z) = » Endgp Z[BS,]

The lower horizontal map is defined as follows: By Iwasawa decomposition G = BK
an element v in Endg C(G/K,Z) is defined by the value it gives to the function 1 7
say .. a;1 si: The endomorphism wu is then sent to the unique endomorphism’ w/ €

Endyzp) Z[B] sending a, to ), a;g; - ao.

ext

The G-equivariant bijection G/K — B2

¢ vields a G-equivariant isomorphism C.(G/ K, 7) —
Z[B2,], an isomorphism of rings Endp(C.(G/K,Z)) — Endp(Z[B2,]), which identi-
fies the subrings U and U, Endg(C.(G/K,Z)) and Endg(Z[B2,]). The covariance (in

B2 — 7B

ext ext

]) and contravariance (in G/K — C.(G/K)) explains the use of the opposite
ring in the upper horizontal arrow. Accordingly, the integrality of U over Endg C.(G/ K, Z)
(Corollary I11.15.5.1) is equivalent to the integrality of U over Endzq) Z[Bg,]. O

V.2 Filtrations and {/-operators

In this section we will present yet another alternative point of view for the geometric
operators ring U, this was suggested by C. Cornut. For notation we refer the reader to

chapter V.

V.2.1 Definition

Set F = F(G) to be the set of all R-filtrations on G = G(F') [Corl7, page 77|, this is the
vectorial Tits building F [Cor17, Chapter 4]. By [Corl7, §6.2], the extended Bruhat-Tits
building Beyy = B(G, F)ey is an affine F-space [Corl7, §5.2.1.], in particular there is a

G-equivariant right "action" of the vectorial Tits building F on By,

Bt X F —— By (a,F) — a+ F.

5Such an isomorphism exists because the required image is fixed by B N K.
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Define az(a) = a + F, and let F° be the subset of all filtrations F € F such that
af(ngt) = BO

ot Lhus we get a right "action":

B, x F° — B

ext

(a, F) — ax(a) =a+ F.

EXAMPLE V.2.1.1. [Corl7, §6.1] Let V # 0 be a F-vector space of dimension n € N, and
G = GL(V). Set
S(V) ={S CP'(V)(F): ¥ = &resL},
F(V) := {R-filtrations on V'}.
A F-norm on 'V is said to be splittable by S € S(V) if and only if
YoeV: a(v)=max{a(vy): L € S}, where v = ZUL,UL e L.

Les
The extended building B(GL(V), F')ex identifies naturally with B(V); the set of all splittable

(by some S € S(V)) F-norms on V. The group G acts on B(V) by (g-a)(v) = alg~'v),
for every g € G and every splittable F-norm o on' V. The action of F(G) ~F(V) on B(V)
is described as follows: For any F € F(V) and a € B(V), there exists S € S(V) such that
a 1s splittable by S and F € F(S), the action is then given by

(a+ F)(v) =max{e " Pa(vy): L € S}.

DEFINITION V.2.1.1. Define

6]:([)): Z a.

ar(a)=b
Let Pr be the stabilizer of F in G, this is the group of F-points of a parabolic subgroup
of G [Corl7, §2.2.8]. Then by G-equivariance we see that

arF, ﬁ]: € EndP_F (Z[ngt]) )
Set F°(B) = {F € F°: B C Pr}, then

LEMMA V.2.1.1. For any F,G in F°(B), we have
ar 00g = Og O Fr and ﬁ]: o ﬁg = ﬁg @) 6]: m EndB(Z[ngt])-

Proof. The first commutativity rule results from the condition AC [Corl7, §5.2.5|, this

)

condition ensures that for any a € BY,

agoar(a)=(a+F)+G=a+ (F+G)=(a+G)+F =aroag(a).
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The same condition loc. cit also yields

Br o ﬁg(b) = Br a

V.2.2 Formula

LEMMA V.2.2.1. Let F € ¥°, b € B, and fix a € BS,, such that ax(a) = b, then

X €

Br(b) =Y ha, h € UrnStab(b)/Ur N Stab(a).
h

Proof. For x € By and F € F°, we may consider the geodesic ray [Corl7, §5.2.11|

Ry — By, t— x+tF.
Since we are working over a complete field, any geodesic ray is standard meaning it
is contained in some apartment [Corl7, 6.2.8]. Thus, for any a' € az'(b), there are

apartments A and A’ containing respectively {a + tF,t > 0} and {a’ +tF,t > 0}.

Suppose that a + F =a' + F =b e AN A ad enxtend the half lines a + tF and o’ + tF
to geodesic lines L and L', given by b+ tG and b + tG’, for G and G’ opposed to F.
There exists a u in Uz (the unipotent radical of Pr) mapping G to G'. It also fixes
a+tF=b+ (t—1)F =a +tF for t > 0. It follows that u maps L to L’ and fixes their
intersection”, which contains b+ tF for all t > 0. It then maps a =b+ G toad =b+ G'.

This proves the lemma. O

50mne may be surprised by the fact that any u mapping G to G’ fixes b. This is because G and G’ are
not merely "opposed to F" in the building at infinity, they are actually, and by construction, "opposed to
F at b", i.e. b+tG and b+ tF (t > 0) make a m-angle at b.
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V.2.3 Comparison with U

Recall that the extended standard apartment A(G,S)qx is an affine space over the real
vector space X.(S) ®z R, and m € M acts on it by translation vy (m) (Lemma 11.3.2.2).
Likewise, the vector space X.(S) ®z R is canonically isomorphic to the apartment F(.S) of
F corresponding to S [Corl7, Definition 9 and §4.1.13 |. Using this identification, for each
m € M~ set F,, € F(S) CF for the filtration corresponding " to —vy(m) € X,(S) ®z R.
Then

ar,. ., ﬁ]:m c EndB(Z[ngt]).

THEOREM V.2.3.1. Let m € M~, then we have

B]:m = Uy m EHdB(Z[BZXt]).

Proof. Let K be the stabilizer of the distinguished base point (ao,0) € B°. This is the

open compact subgroup (§11.3.7)

K= P,. Nkervg = P,, NG,
By §11.3.9.2, it is also the group of elements g € P, such that xg(g) is torsion, hence K

has finite index in K.

Bz, (a1) = thal, heUr, NK/Uz, NmKm™".
h

LEMMA V.2.3.1. For any closed subset® of roots in W C ®, N ®,q let Uy be the unique
closed, connected, unipotent subgroup of G given by Proposition [1.2.5.1. We have
<
Us NK =Uy NK =[] Uaso

acv
for any fixed ordering < on V.

proof of Lemma V.2.5.1. By the proof of [HR10, Lemma 4.1.1] we have K= (MnN [?)K

Let U be any closed subset of roots in @, N®,q. Let u € Ug N K , and write it as myu_u.,

"We want m - ay + Fp, = ay, i.e. a; +v(m) + F, = a1 = (a.,0) in the apartment Aeyx; = Aoxt(S), 50
we want v(m) + F,, = 0, i.e. F,, is opposed to v(m). Alternatively: F,, corresponds to m~!, which is in
M.

8Recall that ¥ is closed if for any «, 3 € ¥ one has

[, B] :={na+mp: foralln,m € Z<o} N® C V.
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with u, € (UTNK), u_ € (U-NK). Thus, (uu;")(u_ )"t =m, € UYU- NN = {1}
[BT65, 5.15], we must have

u=uy €Uy NKNUTNK = Uy NUNN(KNK) =Uy NK.
Hence, U\pﬂ[?: Uy NK.

By proposition 11.3.4.1 (2) and Example [1.3.4.1, we have U, N K = U, for any o € ®yq.
Combining this with (¢) Proposition 11.2.5.1 and with Corollary [1.3.9.2 we obtain the

desired .
Us NK =[] Uato
acevw
for any fixed ordering < on W. This shows the lemma. O]

REMARK V.2.3.1. This proof gives actually a slightly more general result. For any bounded
subset QO C Byeq (€.9. facets). Let Kq be the parahoric associated to Q i.e. its pointwise
stabilizer in G, and IN(Q its pointwise stabilizer in G'. We thus have

Uy N Ko =UyN Ko,
for any closed subset U C &, N Ppeq.

Let m € M~, then Pz, = Ux, x Mgz, is a semi-standard (§11.2.6) parabolic subgroup
containing the minimal parabolic subgroup B. Let W,, be the closed subset of roots in

&, N Pyeq corresponding to Ug,, = Uy,,, then by the above lemma

3
Ur,, NK =[] Uaro

aE\I/m
for any fixed ordering < of W,,,.

LEMMA V.2.3.2. The inclusion Uz, N K — It =U"' N K, induces the bijection

Ur, NK/Uz, NmKm™ —=— It /mItm™L

proof of Lemma 1.2.3.2. We have UT = Ug, (U" N Mg, ), so by Lemma V.2.3.1 we get

a decomposition

UrNK =U'NMz, NK)(Uz, NK)=(Ur,, NK)(U"N Mg, NK). (V.2)

By Lemma [1.3.4.1, we have for all a € ®q

mUa+om_1 = Ua—(a,u(m)) )

but since (o, v(m)) =0 for all @ € ®(Mpx,,,S)” we have

UtNMzr, NmEKm™' =U"NMz, NK. (V.3)

9By definition, the semi-standard Levi Mz centralizes m.
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Now consider the natural projection map (Uy C U™)

Ur, NK - U"NK/U"NnmKm™".
We claim that it is surjective. Let u € U™ N K be written as u = uyug with u; € Uz, N K
and uy € Ut N Mz, N K, therefore
wua (Ut NmKEm™) = wua (Ut N Mze, NmKm ') (Ug, NmKm™) by (V.2)
= wuup(UT N Mz, N K)(Uzr, NmKm™) by (V.3)
=u (U N Mz, NK)(Uz, NmKm™)

=u (Ut NnmKm™),
which proves the claim. Finally it is clear that the kernel of the above map is precisely
Uz, N mKm~'. Which proves the lemma, since by the Iwahori factorization we have

It =U* N K, and we also have mITm™' = Ut NmKm~! form € M~. O

In conclusion, using the above lemmas, we can rewrite the formula of lemma V.2.2.1 as

follows fr,, (ao) = > pcr+ Jmi+m-1 hMas, and this shows by B-equivariance:

B}—m =Up. O

V.3 Norm-compatible families of vertices

We construct in this section some families of metric trees embedded in the extended
building of G. We will use these metric graphs to obtain what we call norm compatible

systems of vertices.

V.3.1 Families of trees

Set a; = (a.,0), and for every m € M we will continue to use the notation a,, = m-(a.,0) €

o
ext”

DEFINITION V.3.1.1. Let M~ be the subset of antidominant elements m € M~ verifying

the following two conditions



152 CHAPTER V. GEOMETRIC REALIZATION OF U

1. The intersection of the geodesic segment"’

[al? am] N A(ca)xt
consists only of the two points a; and a,y,.
2. For all a € D],

(a+0)(ao + var(m)) = (var(m),a) < 0.

LEMMA V.3.1.1. Fizm € M~~. For everyu € UT\{1}, there exists a integer t,, verifying

{teZ:u-ap=am}={t€Z:t<t,}

REMARK V.3.1.1. Geometrically: The a,,’s are on a line and the fized point set of u
is convex, so all we need to show is that (1) u fixes an,e for t < 0 and (2) u does not fix
At fort > 0. For (1), this works for allm € M~. Then (2) follows from (1) and the
reqularity assumption on m, which says that the line is reqular (= not contained in any

affine root).

Proof. When the group is semi-simple simply connected a slightly different statement can
be found in [Leu03, Lemma 1|. Here, we prove it for any reductive group. Recall that we

have

vr= [] U.

a€d . qgNdt
for any fixed ordering ®,.q N ®*. Write u = Ha@redm@Jr Uq. The lemma claims that there

exists t,, such that: for any ¢t € Z we have

—t t_ —t t I :

m”_um’ = H m u,m' € K if and only if ¢ <t,.
aecbredr]?+

By the Iwahori factorization of K, this is equivalent to

mtugm' € K,Va € ®,0q N O if and only if ¢ < t,.
Now, by definition of the affine root groups (§11.3.3), we have for every a € ®,,q N dT a
filtration

Us = Urer, Ua+r>

where T',, = n_'7Z for some integer n, by Proposition I1.3.3.2. There exists then a unique
to € Z such that

Uq € Uathangl \ UaJr(taJrl)n;l'

Therefore, for any t/, € Z, we have (Lemma 11.3.4.1)

—t!, tl, —t!, t,
motUm € m Ua—f—tan;lm - Ua—i—tan;l—l—tfx (var(m),a)

10For rank one groups, that leaves just a minuscule cocharacter.
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Thus, we have

<t ._{ tang'
a — YUa T < )

. VM(m)7 CY>
if and only if mteu,mte € Uyg C K, i.e. uqy € Stabg(a,,u) = P .. NG, In conclusion,
the above discussion shows that the integer
t, = min{t, : Va € ®.qN®T} € Z,
verifies the claim of the Lemma. O

Condition (2) in Definition V.3.1.1 implies that for any m € M~~ the lattice m?% - a; :=
{amt: t € Z} is contained in a unique geodesic line that we denote by ¢,,: R — Aeyi. We

Z . ay, this leaves two orientation and we choose

normalize the map ¢, such that ¢,,(Z) = m
the one given by ¢,,(n) = al,. The action of G being isometric ensures that for any g € G,

we obtain a new geodesic line g - ¢, (R) C Bext-

LEMMA V.3.1.2. Fizm € M~~. For any pair u,v’ € U with u # o/, there is an integer
tuw such that

ween(Z) N e (Z) = {u- apme: t < tyuw}
In particular, the two geodesics u - ¢y (7)) and v - ¢, (Z0) do not coincide globally as long as

u#u.

Proof. When the group G is semi-simple simply connected a slightly different statement
can be found in [Leu03, Lemmas 2 & 3]. Here, we prove it for any reductive group. Firstly,
notice that

U Cp(Z) N - en(Z) = u (en(Z) Nu=' - ¢0(Z)) .
On the one hand, if there exists two integers ¢’ and ¢” such that

a’mt/ = u_lu/amt” - CW(Z) N U_lul . Cm(Z),

then by Lemma V.1.3.2 we must have that ¢’ = ¢”. On the other hand, to conclude, we
apply Lemma V.3.1.1

cm(Z) w0 - e (Z) = {ame i t < ty14}.
By the above discussion, we see that if u - ¢,,(Z) = «’ - ¢;,(Z) then we can not have u # '
otherwise the integer ¢, ,, can be chosen randomly big, thus we must have v’ = u. This

concludes the proof of the Lemma. n

Following Leuzinger |Leu03, §3.1], to each non-zero m € A;, we associate a metric tree

Tm C Bexi- As a set the tree T, is equal to {u-¢,,(R): uw € U}, its vertices are the points
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where the geodesics u - ¢,,(R), u € U, "branch" and its edges are the segments between
successive branching points. Geometrically: the tree is the union of all geodesic lines in the
building extending some half line truncation ¢,,(]Joo, ty]) for some ¢y. If G is semi-simple of

rank one, there is one choice for m and 7, is the whole building (tree) .

REMARK V.3.1.2. Using the above Lemmas V.5.1.1 and V.5.1.2, one can drop the
assumption semisimple and simply connected from Leuzinger’s construction in his main
theorem [Leu03, Theorem 1]. This will show that for every m € M=~ the metric graph Tp,
15 a locally finite metric tree of degree > 3 embedded in the extended Bruhat—Tits building
Bext -

In the following figure, we consider the case when G is simply connected semi-simple,
of split F-rank one, its extended Bruhat—Tits building is a tree and there is only one
(modulo M) choice for m € M~~ '': we highlight one single apartment A, the red vertices

represent the G-orbit of the special vertex a, and the edge in red is the alcove a C A:

In the following figure, we consider the case when G is semisimple adjoint type group of
type As. We draw the apartment A and give two different possible choices m, m’ lying

in M~ inducing two special points a,, and a,,. As suggested by the figure below, an

HTet G = SLy over Q,, B be the Borel subgroup of upper triangular matrices and S be the split
maximal torus of diagonals. We have S~ = {diag(p,p~')} up to units.
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intuitive reformulation for the condition (2) of Definition V.3.1.1 on m € M~ would be to

require that a,, do not lie in the walls of the opposite vectorial chamber C~.

V.3.2 Norm-compatible systems of vertices

Let H be a group of isometries acting on the Bruhat-Tits building B(G)ey. Suppose there
exists a m € M~ for which H acts on the associated tree 7,,, i.e. H-7,, = T,,. Recall
that by construction, 7,, comes with a distinguished half geodesic ¢,,(]oo, 0]). We consider

the following "Moufang" type hypothesis

(Mfng): H fixes the distinguished half line ¢,,(]oo, 0]) and

acts transitively on the half lines opposite to it.

EXAMPLE V.3.2.1. The group SL(2)(Z,) (Localization, uncomplteted) fails to act tran-
sitvely on the directions of the Bruhat-Tits building of SL(2)(Z,), but the stabilizer of a

segment acts transitively on the vertices next to one of its end points, and this guarantees
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(Mfng).

THEOREM V.3.2.1. Assume that (Mfng) holds for H and m € M~~. There exists then

a sequence {amt }rew of special vertices in the fized extended apartment Ae, such that
W]
Z Ak Trt+k’t(amt+k) = 0, Zn Z[ngt]

k=0
where W = W (S) is the Weyl group, Ay € Hi(R) some Hecke operators and Try iy, =

ZheStabH (amt)/StabH(amt+k) h

Proof. We have a left action

Um) x  Z[T.NB — Z[T, N Bl

ext ext

where, U(m) := Uy, : t € N), and Z[T,, N B2

ext

| is the orbit of a; = (a.,0) € Aey under
the semi-group {m'u: t € N,u € U"}. Recall that for every ¢t € IN we have
Ui (apt) = Z miu - a,,.

uelt/mItm—1
For every t € IN\ {0} and every u € I /mI*tm™!, the invariance of the metric with respect

to m' then with respect to u (which fixes a1) imply
d(ame, m'u - ay,) = d(ay, u - ay) = d(ar, ay).
We shall normalize the distance so that d(as, a,,) = 1, thus

d(ar, m'u - ay,) = d(ay, m'um™ m'™ - ay) = d(a1, @) = d(ay, ape) + 1.

ert

:d(b,ay) = d(amt,ar) + 1}. We claim that

Z/{mamt = Z b.

Succ(a,,t)
The support of the term on the left is clearly contained in the successors on the right, we

Set Succ(apt) = {b € T, N B2

ext

will show then the opposite containment. Let b € Succ(a,,t), by our normalization b must
lie in we,,(Z) for some u, € U™ and one has ub_l b = ape+1. Now by (Mnfg), one can

choose u in the stabilizer m!Km~t hence

w, € mKm™ N U = m! (KN U Ym™ = m'T*m™,
for the last equality, see proof of Proposition I11.7.0.2. Accordingly b € m'It - a,,1 C
Support(Up, e ), which shows the claim. Define H; to be the stabilizer in H of the geodesic
segment [a1, a,,t]. The assumption (Mnfg) implies that for each ¢ > 1, the subgroup H,

acts transitively on the vertices appearing in the support of U, a,,: (i.e. acts transitively
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on the successors neighbours Succ(a,,t)). Therefore, for any ¢ > 0, one has

L[mamt = Z b= Z h - Ay t+1.

Succ(a,,t) heH/Hy 1

Let Q,(X) = ZIkV‘:/g ApX* € Hg(R)[X] be the minimal polynomial annihilating the

operator U, (Theorem V.1.3.1). Therefore, we have for any ¢ € IN'\ {0}
W]

0= Z Ak oumk(amt)
k=0
(W

= Z Ak Trt+k,t(amt+k). ]

k=0
DEFINITION V.3.2.1. We will call such a sequence {asm }new a H-norm compatible system

of vertices in Beyy.

REMARK V.3.2.1. Theorem V.5.2.1 above generalizes the series of lemmas proved in
[BBJ18, §3.2] where G = U(3) x U(2) and H = U(2). Without going into details: the
choice of the translation m with which we construct the norm compatible system of vertices
in loc. cit. comes from a local cocharacter p that is induced by the conjugacy class defining
the Shimura datum: m = p(w'). Now using §IV we see that the Hecke polynomial (the
one provided by Blasius—Rogawski as in Definition IV.5.0.1) as computed in [Jet16, §4]
is divisible by the minimal polynomial of the operator U, -1y (a slight variant of Uy Uy
in loc. cit., compare this to [BBJ18, §3.2]). An almost immediate corollary of Theorem
1.3.2.1 is the main theorem of [BBJ18, 1.2], where the relevant hypothesis (Mnfg) for
this case is [Jet10, Lemma 3.6].

12The degree of the polynomial Q,, is |[W/W™| where W™ is the stabilizer of m in the relative Weyl
group W. Since m € M~ then by condition (2) (Definition V.3.1.1) we have deg(Q,,) = [Wm| = |W|.
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VI.1 Notations

We fix an algebraic closure Q of @ and an embedding ig: Q — C. Let F C Q be a totally
real number field. Let E be an imaginary quadratic extension of F', E is usually said a

CM field. Set [E: Q] =2[F : Q] = 2d and let

Y = Homg(F,Q) = Homg(F ,R) = {1;: F - R,1<i<d}
be the set of real embedding corresponding to the archimedean places of F'. Let 7: x + 7

be the non-trivial element of Gal(E/F).

For each place v of F (possibly archimedean), we fix an algebraic closure F, of F,, and
consider the set Y, := Homy(E, F,). The Galois group Gal(F,/F,) acts on X, by
post-composition: an element o € Gal(F,/F,) sends any homomorphism ¢ € Yy to

ooy € Xg,. This yields a bijection

Yg.o/Gal(F,/F,) ~ {w aplace of E: w | v}
between Gal(F,/F,)-orbits of F-embeddings of £ in F', and the places of E above v. Set
Sp = Homq(E , Q) = Homg(E,C) = | | Tp,.

LEX R
For each 1 < i < d, choose an embedding 7; € Y that extends ¢; € Xp. The set

Sp= {t;: 1 <1 < d}isa CM type for E, because X := iEuig We denote by ¢: z+— T

the complex conjugation of Gal(C/R), we then have co7; =7; 0 7.

We fix, for each finite place v of F, an embedding ¢,: ' —— F,. We may then view

elements of ¥ (in particular Xz ,) as v-adic embeddings of E:

Y —— Xgy T —— 1y =1, OL.
We fix a place of E above each finite place of F' as follows: if v splits in F/, we fix the place
w, to be the one defined by ¢, and by abuse of notation, denote the other place by w,. If
v is inert /ramified in £, we abuse notation and denote also by v the unique place of F

above it.
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V1.2 The groups

Fix a positive integer n > 1 and let (V1) be a non-degenerate hermitian E-space of

dimension n + 1. Suppose that '

(n,1) if i =1,
sign(V,v) @r ,, R) =
(n+1,0) ifi#l

We consider the F-algebraic reductive group of unitary isometries U(V, ), this is a

connected reductive group whose R-points, for any F-algebra R, are given by

UV, ¥)(R) ={g € GL(V @r R): ¥(gz, g9y) = ¢(,y), Yo,y € V @r R}.
We will be mainly interested in the cases where R = F,,, the completion of F' at finite
places v, or R = A gy, the ring of finite adeles of F'. Since our hermitian form 1 is fixed,

we shall refer to the group of unitary isometries U(V, ) as U(V).

Let v € V be an anisotropic vector, every other v/ € V' such that (v, v") = ¢(v,v) is
conjugate under SU(V)(F) = U(V)(F) N SL(V)(E) to v, (see [Shi08, 1.5]). Fix once
and for all an anisotropic vector w,,; € V. Without loss of generality, assume that
V(Why1,Wni1) =172 Set D = E - w,,; and W = D*. Hence, the signature of (D,|p)
is (1,0) at all archimedean places of F'. Consequently, the induced hermitian subspace
(W, |w) has signature (n — 1,1) at the distinguished archimedean place ¢; and (n,0)
at the other archimedean places ¢;, V2 < i < n. Similarly, we associate to (W, |y ) the

F-algebraic group of unitary isometries U(WV).

Set Gy := Resp/q U(V) and Gw := Respq U(W). Thus, for x € {V,W} and for any

I For every F-algebra R, set Ep := EQrRand Vi := V@rR = V®gEr. We define the action of 7 on
Er = E®pr R by letting it act on left component. Then, extend 1 to a Hermitian form ¢gr: Vg x Vg — ER
as follows
Yr(v @ z,v" @y) = Yr(v,v")zy", VYu,0' €V and Vz,y € Eg.

For example: For each 1 <17 < d, the fixed embedding ¢;: F' — F, induces a natural F-algebra structure
on R. Now letting R = R, one gets (V,¢) ®F ,, R := (Vg,v¥r), the hermitian space (V ®@p ,, R, ;) over
EF®p i R.

2If 9p(v,v) # 0, one can choose any non-zero vector v € E - v and consider the modified hermitian
E-space (V, ﬁw) But, we may have changed the signature. A better argument: By density of V' in
V.,, there is a vector v € V with ¢(v,v) positive at ¢1, hence everywhere. We choose this v and consider
the hermitian E-space (V, md;) Although the hermitian E-spaces are different, the associated unitary
groups are isomorphic.
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R-algebra R, we have

G,r(R) =UHx)(F®qR)=UH)(F®qR®g R)

= T Us)(R),

LEX R

where R, is just R indexed by elements of ¥, and R, is R endowed with the F-algebra

structure given by the embedding ¢: F' — R. This yields G, g =[] G,,, where,

LEX R

U(dlmE*— 171)R if 1 = L1,
G, = U((x,v) QF,. R) ~
U(dlmE *, 0)]1{ if ¢ 7£ L.

Likewise

G.c= ] Gur where G,;=GL(»®p;C) ~ GL(dimg +)c.
TEiE
By left-exactness of the Weil restriction we have an embedding of Q-algebraic groups

Gy — Gy that identifies Gy with the subgroup of Gy given by:

{g€e Gy(R)CGL(V®qR): g-z =2, VYreD®qR},
for any Q-algebras R. Let G = Gy X Gy and H = A(Gy) C G, where A denotes the
diagonal embedding A: Gy — G.

VI.3 The Deligne torus and variant

We refer the reader to §11.1.3.1 for more details.

e The torus Resc/r G, is called the Deligne torus and is usually denoted by 5. we
will also consider its norm one subgroup U(1) := Ug/r(1). As we have seen in

§11.1.3.1, we get by base change to C a canonical isomorphism of C-tori

S¢ Gm,@ X Gm,@7
where the factors are ordered in the way that S(R) = C* — S(C) = C* x C* is the
map z — (z,7%).
Define the cocharacter p = pg: Gc — S¢ (introduced at the end of §I1.1.3.1),
given on C-points by: C* — S¢(C) ~ C* x C*, z — (z,1), one may also consider

p¢ = fig (¢ for complex conjugation) given on C-points by z — (1, 2).

e For cach ¢ € ¥p, consider the extension E, := E ®p, R/R. We will use the notation
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15 := Resp, /g G, and tU(1) := Ug, /g (1). Likewise, a base change to £, yields an
isomorphism

g, ~ G g, X Gig,,
where the factors are again ordered in the way that £ — (S(E,) = E x E* is the
map z — (z,27). Define similarly the cocharacter p, = p,s: Gpp, — tSg,, given
on E,-points by: EX — 1Sg, (F,) ~ EX x EX, z +— (z,1), one may also consider

pu” = f,g given on C-points by z — (1, 2).

e The distinguished complex embedding 7;: £ — C, induces an isomorphism of fields

n:E,=FE®p, R — 41(F)®r, R=C,
and so yields an isomorphisms of R-groups j;: $ —— ;8 , U(1) —— 7U(1) .
Moreover, the base change of j; to F,, is compatible with the base change to C, in
the sense that
J1op=fu, and jy o u® = p;,
and the following diagram

z—Z
S — U(1)

Jlf S :lﬂ (VL1)

s

ng %) ZU(l)

commutes (see the end of §11.1.3.3).

V1.4 The Hermitian symmetric domains

Let By = (wy, -+ ,wy41) be an orthogonal E-basis of (V, 1), here w,,; is the E-generator
fixed in §V1.2 of the E-line D = W+. Thus, By := (wy,- -+ ,w,) is also an orthogonal
E-basis of (W,4). Recall that F,, = F ®p,, R(~ 11(F) ®F,, R = C) and let By, =
(Wi, ,Wnt11) be the orthogonal E, -basis of (V,, :=V ®p,, R, ;) obtained from By
by base change along the distinguished ¢1: F' < R. Since the signature of (V,,, 1) is (n, 1),
we may and will assume that ¢; = ¢y (wy1,wi1) < 0 and ¢; = ¥y (w; 1, w;1) > 0 for all
1 <i < n+1. Consider for simplicity the orthogonal basis B{,; = (w} , wh, -+ W),y ,) =
(ﬁwl,l, \/%wgyl cee \/%wnH,l), thus the Hermitian form 1; with respect to %Q/’l is
given by

Pi(z,y) = =21y + - F TRy, + Tngp 1Yot
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where z = Y7} raw;; and y = Sl yiw;, are two elements of Vi, with z;,y; €
E,,. This form corresponds to the matrix Jy; = diag(—1,1,---,1). Likewise, let
Jw, = diag(—1,1,---,1) be the hermitian matrix corresponding to the basis By, =
(wll,lv Wy, 7w1,1,1>'

Let us view the E,,-vectors space V,, o~ E/""!(~ C"*!) as being a union

ViUV UV
of negative (resp. null, positive) vectors = € V,,, depending on the sign of ¢ (z,z) € R.
For instance

n+1 n+1
Vi = {:c = inw;J eV, (w x) = —|z|* + Z |lz:? < 0} :
=2

i=1
For every non-zero z € V,,, all non-zero vectors of the "complex"’ line E, z have the

same sign as x. Therefore, we can attach to each E, -line in V,, a sign in {—,0,+}. In
particular, we may think of V|, as the union of all negative lines in V,,. Let X} denote

the set of negative lines in V|.

Intersecting the negative lines with the hyperplane defined by
n+1

:B:Z@wz’-’l eV,ixp =1y,
i=1
one gets an identification of Xy with the complex open ball of dimension n:

n+l n+l
B, =z = inw;l eV, :x;=1and Z\xz|2 <1l;.
i=1 =2
For instance, the "complex" line ¢y, = E, w; ; is an element of &y,. The line ¢y, corresponds

to the centre (1,0,---,0) (for the basis Bf,) of the ball B,,.

The group Gy, (R) >~ U(n,1)(R) acts transitively on the set A} and the stabilizer of ¢y,
is isomorphic to U(n) x U(1) (See [Gol99, Lemma 3.1.3|).

The negative line ¢y determines a homomorphism of R-algebraic groups hg, 1: 5 —— Gy,,,, as
follows: the basis By gives rise to the maximal F-subtorus of U(V)
T(%V) = U(Ewl) X e X U(Ewn+1) C UV,
similarly, the basis By;; defines the maximal R-subtorus of Gy ,,:
T(%V,l) = U(l&/) X U(Eblwl,Z) X X U(EL1w17n+1) = T(%V)R C GV,Ll‘
The homomorphism of F, -spaces E,, — {y given by z — zw; ; induces an isomorphism

of R-groups uy;: 1U(1)g ~ U(E,w;;). Extend uy; to the morphism of R-groups

3By a slight abuse of language, we use the adjective complex here, since this is really a complex line
up to base change along 7;.
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7U)R = T(By1) C Gy, (by letting it act trivially on £> C V;,), given with respect to

the basis By 1, as follows:

uyi: U(Ll)gr = Gy,,,, 2+ diag(z,1,---,1).
Now, define the homomorphism E%V,l to be the composition of the following homomorphism
of R-algebraic groups:
1S T Uk s Gy,
Accordingly, the desired hg, 1: S — Gy, is hg, 1 = EBVJ o 71, applying the square

(VI.1) we also see that

s () e )

The centralizer of }L/%V,l is the compact subgroup

U(ly) x U(fr) ~ U(1)g x U(n,0)g.
Similarly, any negative line ¢ € A} defines a homomorphism of R-algebraic groups
ﬁ\/’gl 115 — Gy, and the transitive action of Gy, ,,(R) on Xy, there exists a unitary
isometry g € Gy, ,, (R) such that g - ¢y, = ¢. Hence, the construction of hy;; above, yields
the equality

e = ghvag™" and by, = ghyg™t
Therefore, one may and will identify the set of negatives lines Xy with the Gy, (R)-

conjugacy class of the homomorphism hy;;.

The discussion above applies also to W. Let Xy be the set of negative definite C-lines in
W, =W ®p,, R(~ C"). The negative line {y = E,,w; 1(= ¢y ), defines a homomorphism
of R-algebraic groups EW, 1: 1S = Gw,,,, given on R-points by’

z€ B =1S(R) — diag(z/2",1,--- ,1) € Gy, (R).
Consider the induced homomorphism hy; = szl 055 — Gy,,,. Likewise, we identify

as above Xy with the Gy, (R)-conjugacy class of the R-algebraic homomorphism Ay ;.

For every x € {V, W}, the transitive action of G, _,, (R) on X, naturally induces a transitive
action of G4(R) = H?:l G, ., (R) on X, with isotropy group the maximal connected
compact subgroup:

Stabg, ) (k) = (U(¢;) xU(¢ xH G, ., (R) ~ U(1)gU(dimg x—1)g x U(dimg %, 0)%& 1,

where, h,: S = G, R is the R- algebralc homomorphism induced from h,;: S = G, ,,, and

4With respect to the basis By, = (w11, ,Wn1)-
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given on R-points by

hy: 2z (hyea(2),1dg, - -+, Idg).
We shall, therefore, identify X, with the G,(RR)-conjugacy class of the homomorphism h,.
Let X = Xy x X, i.e. the G(RR)-conjugacy class of the homomorphism hy X hy : § — Gg.
The diagonal embedding A: W — V & W induces an embedding of A}, into X'. Write )
for A(AXw); the H(RR)-conjugacy class of the homomorphism A(hy): S — Hg. It can be
easily checked that

Y ={he€ X|h: S — Gg factors through A: Hg — Gg}.

V1.5 The reflex field

We define
T := Resg/q Gm,p, Z := Resg/q G F,
and
T' := Resp/q Ug/r(1) = ker(Norm: T — Z).
For x € {V, W}, let det : G, — T! be the determinant map. We have G = ker(det) =
Resp/q SU(%).

Recall the maximal F-subtorus of U,,

T(B,) = U(Ew;) x -+ X U(Bwgims) ~ (Ugyp(1))5™*.
It induces the maximal Q-subtorus of G, = Resp/q U,:

Ts, := Respq(T(B.)) = Respyq U(Ewy) x - - x Respq U(Ewgm,) ~ (TH) ™™
Using the natural diagonal embedding T! — Tg,, we may view T! as the center of
the group G,. Define pg, = (hy)cop € Xi(Tw,)c °, where p is the cocharacter of
the Deligne torus introduced in §VI.3, and (hy)¢ is, using the identification’ G, ¢ ~

H’Eei‘E GL(x ®p; C) ~ GL(dimg *)¢, given by

(h)e: Se(C) > T, o(C)

21/2’2
(21,22) /——— Addimp %5+ 5 Iddimp

IddimE *—1

For every ? € {G,H, Gy, Gy} and any field K C Q, M>(K) denotes the set of ?(K)-

SWe can recover hg, from jui, via hg, (2) = ps(2) - pa(2).
6Determined by the choice of the CM type X.
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conjugacy classes of (algebraic group) homomorphisms G,, x —7x. Note that by construc-

tion, hy: 5 — G, factors through the torus Ty, — G,.

By [Kot84a, (b) Lemma 1.1.3], we know that Mg, (C) = Mg, (Q). Let X, g € Mg, (Q) be
the class that corresponds to the G, (C)-conjugacy class of u, *. The reflex field E(G,, X,)
is defined to be the fixed field of the subgroup of Gal(Q/Q) fixing X, 5. We have (see
proof of [Kot84a, Lemma 1.1.3])

Mg, (Q) ~ X, (Tw,)/W(Gy, Tw, )
where, W(Gy, T, ) denotes the absolute Weyl group of T, in G,. Therefore, the reflex
field E(G,, X,) is also the field of definition of the W (G,, Tsy, )-orbit of ug,. We now
exhibit a rather explicit description of the W (G, Ty, ) ¥ Gal(Q/Q)-module X, (Ty,) which
will ease the computation of the reflex field. Recall that the duality between X, (T, ) and
X*(Tg,) is compatible with the Gal(Q/Q)-action on both sides, in addition
X.(Ty,) ~ Homy_0a(X*(Ts,),Z)

i=dim *

= @ HOHlZ_mod(X*(ReSF/QU(Ewi))7Z)'
=1

thus,

i=dim *

X.(Tx,) ~ O Homz noa(X*(T);,Z),
i=1
where, X*(T?!), is just a copy of X*(T!) indexed by 1 < i < dimg*. On the other hand,
we have

T(Q) = Resg/q Gme(Q) = (E®q Q)% = @ Q)"

LEX K

where Q, is just Q indexed by elements of Xz = HomQ(E,Q) and endowed with the
FE-algebra structure given by the embedding ¢: F < R. Moreover, projections on each
factor (Q,)* is an algebraic character that we denote by f,. Hence, {f,: ¢+ € Xg} is a
Q-basis for X*(T). We have then a canonical isomorphism of Gal(Q/Q)-modules
X" (T)g~ P zf.,

with the canonical Galois module on the rfgsz hand side. Define {f): ¢+ € Xg} to
be the dual basis of {f,: + € ¥g} in Homz_mea(X*(T),Z). A homomorphism f €
Homy_0q4(X*(T),Z) is completely determined by the Z-values it attaches to the basis

{f): 1t € g} or equivalently, to {¢ € Xg}. Therefore, we obtain the isomorphism

{f: X > 7} —— X.(T)g (= Homz (X (T)g, 7)),

"The G, (C)-conjugacy class of u, does not depend on the representatives heg, € X,.
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given by

f— (Af: Q-TQ =P @) =z~ ]] fY(z)f“>> :
LEXE LEXE
The embedding T < T induces an injection X,(T') < X,(T). We will try here to
describe the submodule of {f: ¥ — Z} corresponding to X, (T"!). We begin by describing

the Q-points of T as follows (See §I1.1.3.2)

T'(Q) = {z € T(Q): x(2) =1, Vx € X*(T)“*/}

- {ze @(QL)X: f.(2)fr(2)=1, Vi€ EE}.

Therefore, one can identify X, (T') with {f: Xg — Z|f(¢)+ f(¢7) =0, Vi € Zg}. Recall,

that for each 1 <17 < d, we have fixed a ; € X extending the fixed ¢; € Xp.

In conclusion, we have a isomorphism of Gal(Q/Q)-modules between X, (T1) and Hom(3g, Z),

and thus an isomorphism

Hom (g, Z4m*) —=— X, (Ts,).
The representative pg, € X, (Tsg,) of the class X, g corresponds, under the isomorphism
above, to the function
- ‘ _ (1,0,---,0) ifi=1,
f*i ZE — Zdlm*, Li —
(0,---,0) if 2 <1 <d,
or, equivalently

(1,0,---,0)  if7T=13,
fo:Bp =25 T 0(=1,0,---,0) ifT1=10"

Y

(0,---,0) it v {0,117}
k —
Since all considered tori split over E, the absolute Galois group Gal(Q/Q) will then act

on these objects by its projection on Gal(E/Q). The absolute Weyl group W (G, T, ) ~
Sd

dim *

{for: g — Z9* with 1 < k < dim+} where

acts on Hom (X, Z4™*) by permuting the components in Z4™* e.g. W(G,, Ty, )f. =

(0,---,0, 1 ,0,---,0) ifi=1,
RS dim* ~ th oo
f*,k:- EE > 7. , b — kth position

0,---,0) if2<i<d,
Consequently, a Galois element fixing the Weyl orbit W(G,, Ts,) - f. must fix the ¢;
component, hence is contained in Gal(Q/:,(F)). Now since, f7 # f,, the Galois sub-
group that fixes W(G,, T, ) - f. is precisely Gal(Q/7,(E)) and the field of definition of
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W(Gy, Ty, ) - fuis
E(G., X)) =1u(E).
In conclusion, we also have E(H,Y) = E(G, X) =1;(E).

VI.6 Reflex norm maps

For x € {V, W}, the discussion of §V1.5 shows that ug, = (hs, )cop € Xu(Ty)¢ is actually
defined over 13 (E) = 77(E). Put 4T := Resy,()/q Gmi (r) and define the reflex norm
map (s, ) to be the composition

Rest) (m)/Q (18, Norm

) e
> Res;l(E)/Q(T%*)LI(F) EEEE— TSB* L» T1

T —2— 4T
Therefore, r(us,) = Resr/q Nuy, 1) © 71, where Ny, 1) is (see §I1.1.3.3)
Res;l(E)/F Gm,Zl(E)(R) E— UE/F(l)(R), S — .

for any F-algebra R. This shows, in particular, that r(usy,) is independent of the choice

of the fixed basis *B,, from now on we will denote this map by v := r(uss, ).

In addition, by the exact sequence (I1.2) we obtain again® an exact sequence of Q-tori

1 N/ » T —— T! > 1. (VI.2)
The above discussion justifies the possibility of omitting the distinguished embeddings ©;
and ¢1. Accordingly, we identify the abstract number fields F' with +1(F) C R and E with
(E) =7 (B) C C.

V1.7 The Shimura varieties

Let us begin by proving some properties of the pairs (G, X) and (H,)):

PROPOSITION VI.7.0.1. The pairs (G4, X,), x € {V, W} are Shimura data (See [Mil17b,
Definition 5.5]), that is

SV1 The only characters of the induced representation Ado hg,: S — GL(Lie(G, ¢)),
are z — z)Z,1,Z/z.

SV2 Ado h is a Cartan involution of fo"]f{ forall h € X,.

80n the one hand, the Weil restriction is left exact on the category of Q-groups. On the other hand,
the right surjectivity is a consequence of [CGP15, Corollary A.5.4(1)].
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SV3 G2 does not have any direct Q-factor L on which hy, is trivial.

Proof. For (G,, X,), x € {V,W}:

SV1 Recall that we have defined the R-algebraic homomorphisms hg,: S = Gur ~
U(dimg * — 1,1)g x U(dimg*)§ ', given by

y z/Z
S(R):@ Sz 71dimE*7"'71dimE*
1dimE *—1
with respect to the basis 28,. It is then, straightforward to see that the only characters

Dy

*

of the induced representation Ad o hg, : $ — GL(Lie(G, ¢)), are 2z — 2/Z,1,Z/z.
SV2 The ss that Ad o h is a Cartan involution of G{%, for all h € X,. Since, all Cartan
involutions are conjugate by an inner automorphism, we just need to verify this
axiom for h = hg,, that is to show that the following Lie group
GV (R) = {g € SUR)(C): ghs, (i) = h.()7)

i=d

= {9 € SUMr,.,(C): gha, (i) = hs, ()7} x [ [SUM)F,.(C),

=2

~ {g € SL(xr,, ® C): gJu,'g = Ju,, ghs, (i) = hw, (i)g} x SU(dimp »)(C)*"
is compact. Indeed, for all 2 < ¢ < d, the subgroup SU(%)r ,(C) ~ SU(dimg *)(C)
is compact. While, for ¢, the fact that hg, (i) = Jp, shows’ {g € SL(*p ,, ®

C): gJ»,'g = Jw, and ghsy, (i) = hs, (1)g} is equal to

SU(xr,,,)(C) N O(*p,,, ® C),
and this latter is a closed subgroup of the compact orthogonal group O(*f,,, ® C).
This proves the claim.

SV3 The third axiom requires that G2 does not have any direct Q-factor L on which hg,
is trivial. By [Mill7b, Remark 4.6.], this holds if and only if G2 is of noncompact
type [Mil17h, Definition 3.18|. Consider the isogeny G = SU(x) — G4, clearly
SU(*)(R) is noncompact due to the signature of (xg,,,, 1) which is (dimgx — 1, 1).

This proves G4 is of noncompact type. O

The proposition above, shows that

(G,X) = (Gv,.)(v) X (Gw,.)(w) and (H,y) = A(Gw,Xw)

are also Shimura data, and implies, in particular, that the connected'’ spaces Xy, Xy, X

9The two conditions above, gives the equality g.Js,'g = Ja,7'g = J,, hence g'g = Id, o1 BOC
10The identification we have seen in §VI1.4 between &y and Xy and complex open balls shows that
these spaces are connected and consequently X and ) are connected too.
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and ) are Hermitian symmetric domains.

REMARK VI.7.0.1. Let X € {V,W}, then the Shimura datum (G, X,) verifies the
following additional azioms [Mill7b, Additional axioms, p. 63]:

SV4 The weight homomorphism

—r—1 by,
: Gr —— S > GuRr

Wy,
is clearly trivial'', since he,, factors through U(1), thus it is tautologically defined
over Q.

SV& The rational points of the center THQ) are discrete in T'(Ay). Indeed, T' is
anisotropic over Q and remains anisotropic over R too, thus the set of real points
T (R) must be compact which shows that T*(Q) is discrete in T(Ay) [Mill7D, §5 -

Arithmetic subgroups of tori].

SV6 By definition, the center TV splits over the CM-field E. O

For every compact subgroup K¢ C G(Ay) (resp. Ku C G(Ay)), the Shimura variety
Shi. (G, X) (resp. Shg,(H,))) is the complex analytic space

G(Q\(X x (G(Ay)/Kg)) (resp. H(Q\(Y x (H(Ay)/Kn))),
where G(Q) (resp. H(Q)) acts diagonally on X x (G(Af)/Kg) (resp. Y x (H(Af)/Kn)).

PROPOSITION VI.7.0.2. The Shimura variety Shi, (G, X) (resp. Shxs(H,Y)) has the

following decomposition

|_| LA\X  (resp. |_| r\Y),
geCa heCu

where for X € {G,H}, we have used Cx to denote the finite class group X(Q)\X(Ay)/Kx
and for x € Cx we put T, ;= xKxx~ ' N X(Q) € X(R).

Proof. This is an application of [Mill7h, Lemma 5.13.]. H

The subgroups I', for € Cg (resp. = € Cy) are congruence'” arithmetic subgroups of

G(Q) (resp. H(Q)) (See [Mill7b, Proposition 4.1]).

1 As for any "connected" Shimura variety.
12We have an embedding 7: G — GL(V @ W) ~ GLa, 1. A congruence subgroup I' C G(Q) is a
subgroup containing a finite index subgroup of the form

F(N) = W(G)(Q) N {g S GL2n+1(Z)Z qg= IQ7L+1 mod N},

for some integer N. The subgroup I' C G(Q) is arithmetic if 7(T") is commensurable with 7(G)(Q) N
GL3,11(Z). Arithmetic and congruence subgroups of H(Q), are defined similarly.
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By the work of Baily and Borel [BBG66], each connected component ', \X, (g € Cg) (resp.
'y \Y, (h € Ca)) can be endowed with a natural structure of a complex quasi-projective
variety, hence also Shg (G, X) and Shg, (H,Y). Moreover, if I'; (for = in Cg or Cy) is
small enough (for example, if it is torsion-free) then I'j)\ X is smooth and its algebraic
structure is unique. In this thesis, we will be considering a stronger condition on the
compact open subgroups Kg C G(Ay) and Ky C H(A[), namely being neat [Pin89,
§0.1], it prevents G(Q) (resp. H(Q)) from having fixed point in X x G(Ay)/K (resp.
(¥ xH(Ay)/Kw)), in which case Shg, (G, X') and Shg,, (H,Y) are smooth.

We have a better understanding of the algebraic structure governing the Shimura varieties
Shr. (G, X) and Shg,, (H,Y). Indeed, It follows from results of Deligne, Borovoi, Milne
and Moonen [Del71, Del79, Bor84, Mil83, Mil99, Moo98b], that every Shimura varietiy

has a canonical model ' defined over its reflex field.

From now on, we will reserve the notation Shg. (G, X) and Shg,(H,)) for the corre-
sponding canonical model over the reflex field £(G,X) = E(H,)) = E. Therefore, the
initial definition given in terms of double cosets gives actually the Complex points of these

models:

Shie (G, X)(C) = GIQ\(XX(G(Af)/Kag)), Shiy(H,Y)(C) = HQN\ (V< (H(Af)/Ku))-

VI.8 The projective system and Hecke action

For any two neat compact open subgroups K’ C K, we have an obvious quotient map

TK' K- ShK/(G, X)(C) — ShK(G, X)(C),
which defines a finite étale morphism between Shy/ (G, X) — Shg (G, X). Taking the

projective system over neat compact subgroups,

Sh(G, X) = Jim Shi (G, X),
we obtain a a scheme over C, endowed Withgnggtntinuous action of G(Ay) (see [Del79, 2.1.4
and 2.7| and [Mil90, I1.2 and I1.10]). Define also the quotient map ng x: Sh(G,X) —
Sh(G, X)/K = Shk (G, X). The action of g € G(Ay) denoted T,: Sh(G,X) — Sh(G, X)

on the system (Shx (G, X))k neat defines an isomorphism of algebraic varieties between

13This canonical model depends only on the associated Shimura data. In particular, canonical models
do not depend on the chosen open compact.
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Shi (G, X) and Shy-1x,(G, X) (See [Mill7b, Remark 5.29]). For a fixed finite level
structure KX C G(Ay), The action of T, on Sh(G, X) descends to a correspondence
T, C Shi (G, X) xg Shi (G, X) given by the diagram:

Sh(G,X) — 4 SK(G, X)
lm,x lm,x
Shy (G, X) Shy (G, X)

The correspondence T, = (7g k)« - Ty - (Tg,x)* is finite, i.e.

T, € Can(Shi (G, X)(C) x g Shg (G, X)(C)).
It is called the Hecke correspondence and is usually given by the diagram:

Shi, (G, X) — Shy 1(G, X)

lﬂ-Kg’K lﬂ'Kg_l,K

Shy (G, X) Shy (G, X)
where, we have used the notation K, = K NgKg™! for (any) g € G(Ay).

VI.9 Deligne’s Reciprocity law for tori

VI.9.1 Artin map

Let L be any number field and set X := Resy,q Gy,r. Class field theory states the

existence of the so called Artin map, that is a continuous surjective homomorphism

Artr: X (Ag) — Gal(L™/L),
sending uniformizers to geometric Frobenius elements. Let X (R)" denotes the identity
component for the real points and X (Q)" = ker(X.(Q) — mo(XL(R))). The kernel of
Arty, is precisely the closure'" of X (Q)X.(R)", see [NSW08, §2 Chap. VIII]. The cited
theorem affirms that the closure of the above product in the ideal class group is the kernel.
Indeed the quotient map X (Aq) - X(Aq)/X(Q) is open and continuous, thus the
preimage of the closure of X (Q)X.(R)" C X, (Aq)/XL(Q) is the image of the closure
of X1 (Q)X.(R)" € X.(Ag). Recall that by definition of Art;, we have X (Q) is in its
kernel and clearly X ,(R)" is also in the kernel, therefore since the homomorphism Arty, is

continuous and the target group Gal(L% /L) is Hausdorff the kernel must be closed and

Here, the subgroups Xy, (R)" is identified with the subgroup of X, (Aq) of idele elements z = (z,) in
A ¥ such that z, = 1 if the place v is finite and z, > 0 if the place v is real.
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hence contains (X1 (Q)X.(R)*)™ € X.(Ag), and this shows the equality.

By the real approximation theorem (See [Mill7b, Appendix, p. 152]), X/ (Q) is dense
in X (R) thus one has a surjective map X (Q) — m(X(R)), thus X, (R)/X.(R)" ~

mo(XL(R)) ~ X.(Q)/XL(Q)" ~ I Tietomq(rm {£}

LEMMA VI.9.1.1. The closure X1 (Q)~ C X5(Ay) is equal to L*(O])~.

Proof. Let © = (z,) € X.(Q)~ C X1(Ay) and consider (z,, = (Tyn)v)nen) € Xr(Q)
a sequence that converges to x. There exists an open neighbourhood of = of the form
0, =0% x [ g5 OF, for some open subgroup O3 c L% such that for n > N = N(O,)
one has z,, € O, and (, := [] g, lies in X;(Q) = L*. For each v € S, z,, being
convergent to x,, then |z,,|, = |x,|, is constant for n greater than some integer N, that

we choose to be greater than N. Put for n > N, := max,cs N,,

1 ~
Yn = E;lxvm = (x_xv,n)ves ® (%,n)vgs € OZ NL* = OZ
Then, one has

r=1{, nh_)rgloyn e L*(0;)". O
Consider the homomorphism
Artpp: Xp(Ay) = X1 (Ag)/(XL(QXL(R)T) ™, 2 = [(1eo, 2)].
Let us show that it is surjective. Using the density of X (Q) in X (RR), observe that:
XL (Q)XL(R)T ={(z,Ay) € XL (R) x X(Ay): z € X(R),y € X.(Q) s.t.
mo(x) = mo(y) € mo(XL(R))}- ()
Let 2 = (200, 2f) € X1(Aq), we may modify z by an element in X/ (Q)X.(R)" to kill
Zoo- For this, consider 2’ = (2}, Az}) where 2} € X(Q) is any element such that
mo(2}) = mo(25") (such element exists by density of the Q-points in the R-points of Xp,).
Hence,
z mod X7 (Q)X.(R)" =22 mod X(Q)X.(R)",
and zz’ € X (Ay). Accordingly

[z] € Im(Arty ¢),
which shows the surjectivity of Arty ;. Let us show that the kernel
ker Artry = Xp(Af) N (XL(QXL(R)")” = (X0(Q)F)",
where, the super-script ~ denotes the closure in X (Agq) first, then in X (Ay). Let
z € (Xp(Ay) N XL (Q)XL(R)")~, one then has (using *) a sequence of (x,,Ay,) €
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X (Q)XL(R)* converging to z, so in particular lim, .., 2, = 1. Hence, there is an
integer N big enough such that for n > N one has m(z,) = X (R)", and accordingly
7o(yn) = Xo(R), ie. y, € X (Q)T. Therefore,

z= lm (z,,y,) = lim (1, yn)
n—oo n—oo
which shows that z € (X(Q)")~ where the closure is taken in X (A). This shows that

ker Arty r C (X,(Q)")~. The other inclusion is obvious. In summary, this shows that

Gal(L®/L) =~ mo(X1(Aq)/XL(Q)) ~ X1 (As)/(XL(Q)F)".
By the above discussion we get an exact sequence
1 —— (X(Q)F) —— X (Af) % Gal(L®/L) — 1. (V1.3)
It follows from the description of the connected component of Idéle class group in [AT90,
§9, Theorem 3| that the kernel of r, is isomorphic, as Aut(L/Q)-module, to
I @ (Ar/Q) = L0 @ (A7/Q)) = L0 ® (Z/7)).
yielding the exact sequence

r

1 —— 07" ® (A;/Q) —— Ap /L —25 Gal(L®/L) — 1.

V1.9.2 The cases T and Z

Now let us consider our two fields E and F:

Artp: T(Aq) — Gal(E?/E), Artp: Z(Ag) — Gal(F®/F).
The kernel of Artg (resp. Artp) is the closure of T(R)*T(Q) = T(R)T(Q) ~ E*(C*)?
(resp. Z(R)*T Z(Q) ~ (RZy)F* ~ (R*)YF*)"), in T(Aq)" (resp. Z(Agq)), here we have
used the fact that F is totally imaginary and that F' is totally real. Therefore,
Gal(E”/E) ~ m(T(Aq)/T(Q))
~ T(Aq)/ ker Artg
~ A/ T €2)
€S

~ Ap/EX(0F [] ¢

TEEE
~ AL /(C) EX(OF)”
~ Ap /E*(Og)”
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where, (Of)~ denotes the closure of O} in Op . Likewise,
Gal(F™ [ F) ~ m(Z(Aq)/ Z(Q))
~ Z(Aq)/ ker Artp

~ AL/ (F* ] R)-

LEX R

~ AR /F*(OF T R)™

LEX R
~ AL/ (R%)" F*(Op)”
~ {£} x AL /P (0F)”
~ A FRHOR)
We refer the reader to [Gral4d, 4.2.8 (i)] for the equalities

(F* [] F) =F0; [] F)” c Ay and (B [ EX)” =E*(05 [] ) c A}

LESp 1ES R ey )

VI1.9.2.1 Deligne’s reciprocity law for T

Consider the "zero"-dimensional Shimura datum (T!, {det g, }). Using the reflex norm
map computed in §VI.6
v T,

we obtain the following reciprocity map

r=r(T" {det uy, }): Gal(E”/E) — m(T'(Aq)/T'(Q)) ~ T'(A;)/TH(Q),
by composing the inverse of Artgp: EX(OF)"\AY = Gal(E®/E) and v. But, since
T'(Q) is discrete and hence closed in T*(A ;)(See remark VI.7.0.1), the target of the map
ran (T, {det sy, }) is actually TH(A;)/THQ).

Let K1 C T'(A;) be a open compact subgroup. The action of o € Gal(E®/E) on
[det i, 1] € Shie,, (T, det ps, )(C) = THQ)\({det pus, } x T'(Af)/Ks)
is defined by

o([det pss, , t]) := [roo(0) det pss, , n (o) t].
Here, we have r (o) det ug, = det g, and the map r factors then through its finite part
rin = Tan (T, {det pog, }): AF — TH(Ay).
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VI.10 Galois action on connected components

In this section we describe the action of Gal(E®/E) on the connected component of
Shg, (H,Y), for a fixed open compact subgroup Ky of H(Af). The derived group
Ga is simply connected'”. Therefore, one has a simplified description of the connected

components of the Shimura variety:

o (Shie (H, V) = mo (H(Q\(Y x (H(Ay)/Kn)))
~ H(Q\H(Af)/Ku
= H(Q)\H(A)/Ku H™ (Ay)
~ THQ)\T'(Ay)/ det(Kn)

= Shyet(xe) (T, det gy, ) (C)

The previous equalities uses the connectedness of ) first, then density of H!*(Q) in

HYr(A ) (See [Mill7b, §5 - The structure of a Shimura variety]).

Using the action of Galois group Gal(E"/E) on the complex points of Shyey(syy) (T, det pss,,, )
as described in §V1.9, we obtain that the action of o € Gal(E*/E) on,

[det /L‘Bwat] € 7TO(ShKH <H> y)) = Shdet(KH)(T17 {det M%W})(C)a
is given by

o ([det pipy 1) = [det 1z, 5n(0) ]

VI.11 Morphisms of Shimura varieties

The inclusion homomorphism H — G, induces a map H(R) — G(R) that sends the

Hermitian symmetric domain ) into X. Therefore, we get a morphism of Shimura data

¢: (H,Y) — (G, X) in the sense of [Mill7h, Definition 5.15].

THEOREM VI.11.0.1. The injective morphism of Shimura data ¢: (H,Y) — (G, X)
induces a closed immersion of Shimura varieties Sh(y): Sh(H,)Y) — Sh(G, X).

Proof. See [Del71, Theorem 1.15]. O

5Indeed, G%e" is isomorphic to SL,, T
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REMARK VI.11.0.1. In the above theorem, the morphism Sh(y) being a closed immersion
of an inverse limit of reqular maps means: For every "sufficiently” small compact open

subgroup Kg C G(Ay), there is a compact open subgroup Ky C H(A) such that the map

Sh(gp)KH,KG: ShKH <H> y) - ShKG(G7 X)v
giwen naturally on C-points by H(Q)(y,hKu) — G(Q)(y,hKg) for any y € Y and
h € H(Ay), is a closed immersion. We then get the following commutative diagram

Sh(e)

Sh(H, Y) » Sh(G, X)

lﬂ'H,KH lﬂ'G,KG

Sh(@) kg, kg
Shp(H,Y) ———— Shg, (G, X).

To ease the notation we will omit the subscripts referring to the compacts in the map

Sh(SO)KHaKG'

We collect here a two results concerning the algebraicity of morphisms we will be working

with.

(i) The Hecke action of G(Af) on Sh(G, X) is defined over E (See [Mill7h, Theorem
13.6]).

(ii) The closed immersion of Shimura varieties Sh(y): Sh(H,)) — Sh(G, X) is defined
over E. [Mill7b, remark 13.8].

VI.12 The set of special cycles Z¢ x(H)

For the remaining of this section, we will fix a neat compact open subgroup of K C G(Ay).

DEFINITION VI.12.0.1 (Special cycles). We call a closed subvariety Z C Shg (G, X)
a H-special cycle, if there exists an element g € G(Ay) such that Z is an irreducible

component of the image of the map

Sh(H,Y) 2% Sh(@, &) —“ Sh(G, X) "S5 Shy(G, X).

LEMMA VI.12.0.1. A closed subvariety Z C Shi (G, X) is a H-Special cycle if and only
if there exists an element g € G(Ay), such that

Z = [V x gK] C Shg(G, X)(C).

Proof. The equivalence above follows immediately, using Remark VI1.11.0.1 and by observ-
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ing that
Z =Ty 0 Sh(p)(H(Q)(Kny x V),
where K, := H(A;) NgKg™, See [Moo98a, Remark 2.6]. O

For every g € G(Ay), we will denote by 3, the n-codimensional H-special cycle [V x g K] C
Sh (G, X)(C), as defined in Definition VI.12.0.1. Set,

Zax(H) = {35: 9 € G(Ay).}
LEMMA VI.12.0.2. The natural projection G(A ;) — Zq x(H), induces the bijection

Zax(H) 2 H(Q)Za(Q)\G(Ay)/K,

where, Zg ~ T! x T! denotes the center of G.

Proof. Using the total geodesicity of ) and the Baire’s category theorem, one proves that

Zxc = Staba)(V)\G(A)/K.
Then, one shows that Stabg(q)(Y) = H(Q)Zc(Q) = Ng(H)(Q). For more details see
[Jet16, Lemma 2.3]. O

LEMMA VI.12.0.3. In the following bijection

Zex(H)  H(Q)Za(Q)\G(Ay)/K,
we can replace H(Q)Za(H)(Q) by its closure in G(Ay):

Zex(H) = (H(Q)Za(Q)) \G(Af)/K = Za(QH(QH™ (A)\G(Ay)/K.

Proof. The second'’ equality is due to the fact that the closure of H(Q) is H(Q)H (A ;).
The latter fact is [Del79, corollaire 2.0.9], because HI" verifies the strong approximation
for {oo} since by assumption H" is simply connected, semisimple by definition and of
noncompact type. Observe also, that Zg(Q)™ = Zg(Q), since it is a copy of T'(Q), which
is discrete (Remark VI.7.0.1) and thus closed in T'(A). O

16The first equality uses the fact that if G is a topological group (might even be locally compact) and
K an open compact subgroup (being open implies the discreteness of the quotient G /K), then for every
subgroup H of G we have H\G/K = H\G/K, where H is the closure of H in G.
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VI.13 Fields of definition of cycles in Z¢g x(H)

LEMMA VI.13.0.1. For every g € G(Ay), the cycle 3, is the image of the connected

component

H(Q) N Kyu1\Y € mo(Shg,  (H,V)).

Proof. For obvious topological reasons, K,y is a compact open subgroup of H(A ). The

pre-image of 3, is the component over [(1,1)]:

H(Q) N Kym\Y ~ Shi. (H™, ).

T
g

Here, Kif* € H(Ay) is some open compact subgroup containing Kp, N H (Ay). O

Recall that, for any neat compact subgroup Ky C H(A[), we have

o Sy (L) = THQ)\TH(A), det(Kn).
The set of classes T'(Q)\Twu(A)/Kr: of T! with respect to any compact open subgroup
K1 C TY(Ay) form an Abelian group. Therefore, the connected components of Shy,, (H, ))
are all defined over abelian extensions of £. More precisely the field of definition F, of
the component Shyq, (H,Y)" over [(1,1)] € Shaet(xy) (T, {det piss,, }) is the finite abelian

extension of E fixed by

Artp(r ' (TY(Q)T'(R) det(Ku))),
where r = r(H,Y): Ay — T'(Aq) is the reciprocity map constructed in §VI1.9 and
§VI.10.

But since, for every g € G(Ay), the induced morphism Shg,  (H,Y) — Shg(G, X) is
defined over F and every cycle 3, is then defined over the subfield E, of F® that satisfies

(the map r factors through its finite part):

Gal(E, /E) = T'(A)/T'(Q) det(K,).
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VI.14 Transfer fields and reciprocity law

In this section, we will describe a bit further the field of definition of cycles Zg x(H), by

computing the kernel of the reciprocity map constructed in §V1.9 a map

Tan: Gal(E/E) — THA;)/TY(Q)".

VI.14.1 The kernel of the Verlagerung map

The inclusion F' — FE induces a commutative diagram
Z(A;) — s T(Ay)
lArtF lAI‘tE <VI : 4)

Gal(F*/F) Yy Gal(E?/E),

where, Ver is the group-theoretic transfer map also called the Verlagerung map, see [Neu86,

p. 26]|.

LEMMA VI.14.1.1. The kernel of the Verlagerung map is

ker(Ver: Gal(F™/F) — Gal(E®/E)) ~ F* | F*" ~ (Z/27)".

Proof. We have
= (ig/r(Op ")) E* Nigyr(Af )
1) . _
D ige (OF)FXNAL)
(©F") F)
where, we have used £ N Z'E/F(A;’;r) = ig/p(L) for (1) and then Dirichlet’s unit theorem;
since [OF : OF] < 00, let t1,- -+ , 17 be a set of coset representatives for O /OF., then
EX(0F)” = EX(UitiOF)” = EX(0F)” = EX(Op")".
By commutativity of the above diagram (and injectivity of ig/p) we get
ker(Ver) = ArtF(i;}E(ker(ArtE) Nim(ig/r)))
= Artp((O3 ) F).
Thus,
ker(Ver) ~ (O3 ") F*/ker(Arty) = (05 ") F* /(O )" F* .
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Accordingly, (See footnote 7 page 193)
ker(Ver) ~ F* /F*T.
Finally, we get F'*/F*% ~ (7Z/27)% via the archimedean signature map:

sgioe: B = R /(FR)° = [ {1 20 @)/ 12 iess

LEX R
which is surjective with kernel F>*t, O

VI1.14.2 The kernel of the reciprocity map

PRrRoPOSITION VI.14.2.1. We have a long exact sequence

FXJF*t e Gal(F*/F) Y Gal(E®/E) % T'(A;)/TY(Q).

Proof. As we have already computed the kernel of the Verlagerung map in Lemma VI.14.1.1,
it remains to show that the kernel of the map rg, is the image of the Verlagerung map.

Recall that we have an exact sequence (see V1.2)

v:z

1 W/ > T e > 1. (VL5)

Using Galois cohomology and Hilbert Theorem 90, we deduce from it the following exact
diagram
| —— Z(Q) —— T(Q) —“— T (Q) —— 1

| | I

1 —— Z(Aq) — T(Aq) 2> T'(Aq) —— 1.
Taking the closure in the adelic points of the first row yields the following commutative

diagram'” and using the exact sequence (V1.3) seen in §VI1.9.1, we get the following com-

mutative diagram, where the lower right square is the definition of rg, = r(T?, {det ., })

1"Recall that T!(Q) is discrete in T!(A¢) by Remark VI.7.0.1
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as in §V1.9
1 1 1
I (2Q) — > T(Q — 5 TH(Q) —— 1

Therefore,

ker(ran) = Artp(vH(TH(Q)))
= Artg oigp(Z(A;)T(Q)7)
= Artp(ip/r(Z(Ay)))
= Ver o Artp(Z(A)) (VL4)
= Ver(Gal(F**/F)) ~ A¥ E*/E* ~ A}, /F*. -

V1.14.3 Transfer fields of definition

In the remainder of this section, we focus on the relation between E(co) and ring class
fields. For every Op-order O in Of, we denote by O the group of units of its profinite
completion. By extending 1 € Of to a Op-basis we see that such order necessarily of the

form O = Op + ¢Of where ¢ C O is a non-zero ideal of O and
O = (0. ®Z)* = (Op + Op)* C A}, = (E®Z)".

DEFINITION VI.14.3.1. We attach to each Op-order O, = Op + ¢Og two subfields
E(c) C E[¢] C E®:

1. The ring class field of conductor ¢ denoted Elc|, is the fized field of ArtE((/Q\CXEX/EX),
i.e.
Gal(E[c]/E) ~ EX\A} ;/ O ~ Pic(O,).
2. The transfer field of conductor ¢ denoted E(c), is the field whose norm subgroup is
EX A, OF, e
Gal(E(c)/E) = E*A} \Aj /O
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We have, R

EXAX OX AX

Gal(E[O.]/E(O,)) ~ BI7C Bl
EXOr AR, NEXO;

which is a quotient of Pic(Op).

Now, If F has class number one (e.g. Q), then for any Op-order O we have E[O] = E(O).
Moreover, (VI.7) implies that E(oco) = E[oc]. For ¢, ¢’ two non-zero ideals of Op, we have

Ox . OX = O~

ged(c,¢’) and

EXAL (’)X ) C EXAL (’)X NE AL (’)X EX(’)X y CEX OX N E*O;
thus,
Elc]N E[(] = E[ged(c, )], FE(c)NE() = E(ged(c, ') (VL.6)
and
E[]E[d] C Ellem(c,¢)], E(¢)E(¢) € E(lem(c, ).
Set E[oo] = UpE[O] and E(c0) = UpE(O), where the union is taken over all Op-orders
of Op. There exists a descending chain of Op-orders {O,, };>1 such that

:ﬂ@;,E[oo]:UE[@ and E(co UE
Accordingly, ArtE((a ) =0y ArtE(O ). From which one deduces that
E[OO] _ (Eab)ArtE(Oﬁ) and E(OO) _ (Eab)ArtE(A;f)'
In other words, the transfer field F(oco) is the subfield of E* fixed by Ver(Gal(F**/F)).
The field E[oo] is a finite Galois extension of E(oo), with
Gal(E[o0]/E(00)) = FX\A}, /O ~ Pic(Op). (VLT7)
Moreover, the extension F(oo)/F is Galois and its Galois group Gal(E(co0)/F) is the
Galois dihedral extension:
1 —— Gal(E(x0)/E) —— Gal(E(x)/F) —— Gal(E/F) —— 1
equipped with the canonical splitting given by the complex conjugation
Gal(E()/F) ~ Gal(E(c0)/E) x {1, c}.
From now on, we will use the notation
Artp: T'(Ay)/TH(Q) = Gal(E(0)/E),
for the inverse image of rg,(T!, {det ugp,, }). Proposition VI.14.2.1 has the following

immediate consequence:

COROLLARY VI.14.3.1. For every g € G(Ay), the field of definition E, of the cycle
39 € Za.x(H) is contained in the transfer field E(0o).
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REMARK VI.14.3.1. We warn the reader, that there exists two notions of "ring class
fields" in the literature. Our use of this terminology follows the one used in [CV05, CVO7].
The second terminology, which is used in [ZhaO1, Nek07], is what we called "transfer

felds”.

VI.15 Galois action via H(A /)

PROPOSITION VI.15.0.1. For every o € Gal(E(0)/E), let h, € H(A¢) be any element
satisfying Arty, (det(hy) - THQ)) = 0|p(o0). For every g € G(Ay), we have

0(59) = 5ho'g'

Proof. Fix an element g € G(Ay). In §VI.10, we saw the description of the action of
Gal(E(c0)/E) on the set of connected components of Shg,,  (H,Y)(C):

|| T\,

heCh,q4

where Cr, = H(Q)\H(Af)/Ku, and Ty, = H(Q) N hKg bt = H(Q) N Ku py.-

This description says that, for every o € Gal(E(oc0)/E), if we let h, € H(A) be any
element verifying Artp(det(h,) - TH(Q)) = 0|g(o0), then

(T\Y)” = Do n\V.
On the other hand by Lemma VI.13.0.1, the cycle 3, is the image of I')1\Y = Ku,\Y
by the closed immersion (Remark VI.11.0.1) Sh(®) gy ke Shiy, (H,Y) — Shg (G, &).
Reccall that Sh(®)ky ke is defined over E. Therefore, 0(34) = 3n,4- O

Consequently, the left action of H(Af) on the set of H-special cycles

Zgx(H) = Za(QH(QH™ (A;)\G(Af)/Ka,
descends to an action of
H(Q)H" (A;)\H(A;) ~ TY(Q)\T'(A;) =~ Gal(E(c0)/E),
which yields,
Gal(E(00)/E)\Za,x(H) ~ Za(QH(A;)\G(Af)/K.
Using the above proposition, we see that for every g € G(Ay), the cycle 3, is defined over
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the subfield E C E(00), given by '

Gal(E(c0)/E)) = Arty(det ((Za(QH(QH (A)gKg™ ") NH(Ay)) .

VI.16 Hecke action on Z¢g x(H)

Consider the map

g » Ty
where, 7, is the Hecke correspondence defined in §V1.8. The map T factors through the

double quotient K\G(Ay)/K.

For any g € G(Ay), we choose a system (g;) of representatives of KgK /K, ie. KgK =
U0 K € G(Ay)/K. We get then an operator on Z[Z¢ (H)| defined as follows

Ty: 2|2 x(H)] — Z[Z¢ k(H)], by > 2idgar
Define Hx = H(G(Ay)/J K) to be the global Hecke algebra generated over Z by { K¢gK '} for
all g € G(Ay), equipped with the classical convolution product. By definition, the actions
of Gal(E(00)/E) and Hx on Z[Z¢ x(H)] commute. This yields the Gal(E(c0)/E) x Hk-
module Z[Z¢ x (H)].

'®The field E is contained in the field E,; defined at the end of §V1.13.
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VII.1 Main theorems on distribution relations

VII.1.1 Notations

We will systematically use notation from the previous chapter.

For any finite set S of finite places of our fixed totally real field F, set O3 for the ring
of S-units that is the set of x € F' such that v(z) > 0 for all finite places v € S, and put
03 = O ®o, O%. We will also use
!/
Fo:=]]F, and A7, :=]]F

veES veES
the restricted product of the additive groups F* for all finite places v € S, with respect to

the local integers O, . One can write the finite adeles of I as the product Ay = Fgx Af;’ 5
For any place v of F, let F, be the completion of F' at v and let Op, be its ring of
integers with uniformizer w, and maximal ideal p, = @w,OF,. For any F-algebra R, let

RU - R@F Fv-

Recall that we have fixed in § V1.1, for each finite place v of F, an embedding ¢,: F —— F, ,
and we set w, for the unique place of E defined by ¢, If v splits in E, by abuse of notation
denote the other place by w,. When the place v is understood from the context, we will

omit the subscript v and simply write w and w.

VII.1.2 Compact subgroups and base cycles

VII.1.2.1 Integral models

Recall that we identify U(W') with the subgroup of U(V') given by

{9 UWV)R) CGL(V®rR): g-x =12, VreDQrR},
for any F-algebras R. We have a faithful representations of U(V') and U(W)
UW) —— U(V) —— GL(Vr)
where Vg is the underlying F-vector space of the hermitian E-space (V1) (§V1.2). We
identify Uy and Uy, with closed subgroups of GL(Vr). Let U,, and Uy, be the schematic
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closures of U(V) and U(W) in G = GL(Vr)o, "

For x € {V, W}, the schematic closure U, is a model for U(x) over Op [GH19, Lemma
2.4.1]. But by [GH19, Lemma 2.4.2|, there is a finite set S? of finite places of F' such that
U o5 becomes smooth over O?g. Subsequently, [Conl4, Proposition 3.1.9| ensures that

*, P

for a large enough finite set S! of finite places of I containing S, all the fibers of H* !
e

will be connected and reductive, i.e. U o is a reductive O?l—model of U(%). Accordingly,
*Up

the homomorphism ¢ extends to the models over Op s for S' = Si, U S}, and we get

EW,(’);El — Hv,off / gOF,sl'
Using [GH19, Lemma 2.4.1|, we get for any finite place v & S* of F' a hyperspecial maximal
compact subgroup

Uy (OF,) = U(V)(F,) NG(OF,) and,

Uy (Or,) = UW)(F,) NG(Ok,) = UW)(F,) NUy (OF,). (VIL1)

REMARK VIIL.1.2.1. In the previous discussion we chose on purpose to use general
arguments to stay relatively in line with Remark VI11.5.2.1. Nevertheless, a more specific
arqgument goes as follows: We pick an Og lattice Ly in W, Lp in D and set Ly, = Ly BLp
m V. We choose them such that they are contained in their duals, with the quotients as
small as possible. Now, we take S' to be the bad places, those occurring in the quotient
LY/Ly. Away from St the restriction of 1 on Ly, Ly is a perfect integral hermitian

pairing, giving rise to the desired smooth reductive models which are unitary groups.

VII.1.2.2 Compact subgroups

Let K., with x € {V, W}, be any open compact subgroup of U, (A ). It inersects then
U, (Il ¢ Or,) = [1gs1 U,(OF,) in an open compact subgroup. Therefore, there exists
a finite set S? = S%(Ky, Ky )’ containing S', for which both compact subgroups can be
written as

K, = [(*,S2 X H H*<0Fv)7v* € {‘/7 W}
v 82
where K, g2 is some open compact subgroup of U(x)(Fs2) = [[,cq2 U, (F,). In particular,

if we set K, := U,(Op,) for all finite places v of F' away from 5% we have by (VIL.1)

Kwo = UW)(E,) N Ky,

Here, we are picking up implicitly a lattice in Vz to obtain the O structure.
2We want to insist here that the enlarged set S depends on both compacts Ky and Kyy.
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VII.1.2.3 A base cycle

Now for each x € {V, W}, let g, = (gs) be any fixed element of U,(Ay). By definition of
the adelic points of U,, there exists a finite set of places S = S(Ky, Kw, gv, gw) containing
S? URam(FE/F) and such that g,, € Ky, for all v € S and g, s € U,(Fs). But as far as
the formation of the cycle 3, for ¢ = (gv, gw) is concerned, nothing is lost by considering
g0 = (9o,v:gow) € G(Ay), such that g5, = 1 € U, (A7) and goxs = gus € Uu(Fs),

since 34 = 3g,-

Now that we have fixed our set of finite places S, let us consider

1. )
T := ker Norm: Resps 05 Gos = Gos -
—_——— —~—
=T =Z
Each of the above reductive groups over O3 are models for the obvious corresponding

groups in TL, Tr and Zp, so in particular
T'(Ay) = T'(Ary), T(Ay) = T(Apy) and Z(As) = Z(Apy).
We view again T' as the center of U, and also Uy,. Let Q‘gﬁr denote the kernel of the

determinant map det: Uy, — T!. Write v: T — T! for the homomorphism given on

O3-points by z — z/Z.

Define G := U, x Uy, and H := A(U,;,) C G’. We then have

G(Ay) =G(Apys), and H(Ay) =H(Agy).
Set K, := Ky, x Ky, for any place v € §, Kg = Kyg X Kz, K% = K x K.
K= Kv X KW and KH = A(Kw) = KH,S X KEI

REMARK VII.1.2.2. For each place v ¢ S, we have an exact sequence of O, -groups

det
1 > Ugder y U, —= 7! y 1.

*

It induces the long exact sequence in étale cohomology

1 B err<OFv) B H*(OFv) ﬂ) Il(OFv) E— Hi’t(OFv7Eier)'
On one hand, we have Hy,(Op,, U = H'(F,,, U [MilS0, 4.5 §I1I]. On the other hand,
Lang’s theorem implies H'(F,,, U%) = 0 [Lan56]. Therefore,

det(U,(OF,)) = T'(Op,). O

3The diagonal homomorphism A extends to the models over O3 since ¢ does.
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VII.1.3 The field

The stabilizer of 3,, in H(Ay) is
StabH(Af);,go = (Z(;(Q) . H(Q) . gngo_l) N H(Af)
LEMMA VIIL.1.3.1. We may rewrite the stabilizer as

StabH(Af)ﬁgo = H(Q) ) (Kﬁ,go,s X Kfql) )
where K§ . ¢ = ((Za(Q) N K¥) 'gO,SKSQ(I}q) NH(Fs)".

Proof. We have

Stabr(a )3 = H(Q) - ((Za(Q) N Zu(Q)K?) - goKgy ' NH(Ay))

(Q) - ((Za(Q) NK®) - goKgy' NH(Ay))

Q) - (((Ze(Q) N K®) - go,sKsgy) NH(Fs) x Kg)
(@) - (

Q) - Kggo,s x K1)

where, (0) is a straightforward consequence of the fact that ¢§ = 1 € G(A}, ) and Kg =
KSNH(AZ ).
(1) Let zg = zpk € Zg(Q) N Zu(Q)K® = Zg(Q) N Zu(Q)G(0O3). Write z¢ = (2v, 2w)
and zpk = A(zyy)(kv, kw) = kzg, hence’

2V Wni1 = Ky 2y Wni1 = kyway,
so zy € T'(O3) = Zy, (03). Accordingly 2, € T'(0F) = Zy,, (0f) and 2z € K9,
(2) Let (zgo,gk’sgo_’klg, k%) € K§ 4 ¢ X K € H(Apy), for some z € Zg(Q) N K. Hence
(290,5ks90.5: k°) = 2(go.sksgn . & 'k>)
:=k'ScK*S
= Z(QO,SkSg&éa )
= zgo(ks, k") g5 " € (Za(Q) N K*)goK g " NH(A),
and so ((Za(Q) N K®) - goKgy ') NH(Ay) = K§ . 5 x K§. O

Set K := Ej , the field of definition of the cycle 3,4,, it is the subfield of E,, C E(oc0)" fixed

“Note that by SV5 of Remark V1.7.0.1 the subgroup Zg(Q) is discrete in Zg (A ) and consequently
the intersection Zg(Q) N K must be finite.

SRecall that w,, 1 is the fixed generator of the global E-hermitian line D which is orthogonal to W.

SRecall that Ku, = goKgy' N H(A;) and E,  C F(oco) is the subfield fixed by
Art}, (Tl(Q) det(KHgO)).
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by (see §VI.15)
Arty (det (H(Q) - (K& 4.5 X Ki7))) = Arty (TH(Q) det (Kf 5.6 X K7)) -
where, Art}, is the map defined above Corollary VI.14.3.1. Therefore,
Azﬂ’f . Tl(Af> Art}5
" THQ)(Ugys x US) =

2] Ix

_ » Gal(K/E)
EXAL(OF ¢ x 0F)

where, Uy, s := det Kff , 5, U® 1= det Ky}, and Oy ¢ C (E ® Fg)* such that v(O &) =
Uy,.s and finally O3 = Or ®os (5;3 = [l,es OF, C A% ; (see Remark VII.1.2.2), where we
have denoted, slightly abusively, Op, = O ®0, OF, the maximal order of the quadratic
étale algebra F, = F ®p F,.

VII.1.4 Ramification in transfer fields extensions

Let v be a finite place of F' that is unramified in the extension E/F, hence

w? 1If v split in E,

v

Ef/F Op, =
{1} If visinert in E.
LEMMA VII.1.4.1. Let ¢ C Op be any non-zero ideal of Op. Any prime of E not dividing
¢Op is unramified in E[c]/E, hence also in E(c)/E.

Proof. Let v be any place of E, and E, the completion of E at the place v. The extension
Elc]/E being Galois, then the various completions F|c|,, with w a place of E[c] extending
v are isomorphic, let E[c],, be (any) one of these completions. Let g be the prime of F|c]
corresponding to the place w and identify the local Galois group Gal(E|[c],,/E,) with the
decomposition group of Dy(E[c¢]/E) C Gal(E[c]/E) (the stabilizer of q in Gal(E[c]/E)).
The decomposition group Dy(E[c]/E) is the image of the composition of the following two

maps

Ef —— A}, —» A} /E*OF —=— Gal(E[d]/E),
and the image of Of , in Gal(E[c]/E) is precisely the inertia group I(Elc|/E). Now,
because v { ¢cOp we see that the image of Oy, is trivial, i.e. v is unramified in the

extension E[c|/E. O
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VII.1.5 Ramification in K-transfer fields extensions

For any nonzero ideal f C O that is prime to S, we consider the field K(f) C E(c0), fixed
by Art(Us), where U; := Uy, 5 X U with U = [1.¢s U, (ordg,(f)) and

ULe) = v((On, + T08,)"), v S ceN.
N—————

::Ov,c
The fields KC(f) will be called the K-transfer field of conductors f. Set

Df = (99075 X (Of ®@§ O}S;) = Ogo,S X H Ov,ordFv(f) C OE,
vegS
in particular, we have v(O;) = U;. Note that K(1) = K. Moreover, for every two Op-ideals

n,f C Op prime to S, we have K(fn) D K(f) and isomorphisms:

EXAX’ DX v . Tl(Q)U AI‘tlE .
BAr,or = T, = ¢ GallK(in)/K(f).

We then obtain an exact sequence’

EXNAJ 0F Iole
1 : EXQAS,;DZXH : Ef% > Gal(K(fn) /K(f)) —— 1 (VIL.2)

with X
OF O 11 Crordnin

X S - X
Df“ (Df“)x v pyln OvvordFv(fn)

Moreover, one can explicitly describe the left global error term appearing in the above

exact sequence:

LEMMA VIL.1.5.1. The natural inclusion map yields an inclusion
OEOD; ) > EXQA;foX
(’)EHD):1 EX* QA;JIDQ

with finite cokernel of size smaller than 2.

Proof. This is [Nek07, Proposition (2.9)]. O

EXmA;fOIX

For later use, we set d; := # | —=L=—
’ f EXNAY O]

) for any Op-ideal f.

REMARK VII.1.5.1. Observe that by (VI1.0), for any ideal f C Op prime to S, there exists

a smallest non-zero ideal ¢; C Op with respect to divisibility such that

O, CO;COpC Op

"This is a consequence of the following elementary fact: if one has three subgroups 4 and C C B of
some abelian group, then the inclusion maps yield an exact sequence

ANB B AB
— = — — — L.

= %rc —~ ¢ " ac
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Equivalently, E(c;) is the smallest transfer field containing IC(f):
E(f) C L) € E(g). O

LEMMA VII.1.5.2. For any ideal § C Op prime to S, the field KC(f) is contained in the
transfer field E(c1f).

Proof. We have D1 N E)\f = 9, but O; D O., (Remark VII.1.5.1). It follows that
Df D @Cl N @\f D 6C1f7
hence E(cif) D K(f). O

Using Lemmas VII.1.4.1 and VII.1.5.2 we get the following immediate consequence:

COROLLARY VIIL.1.5.1. Let f C O be a non-zero ideal of Op prime to S. If p is a prime

ideal of Op not dividing cif then each prime of E above p is unramified in K(f).
LEMMA VII.1.5.3. Let § be any non-zero ideal of Op satisfying

ftlo:=lem{(u—1): u € (OF)tors,u # 1}.

For any ideal n C Op, we have

EXNAL O~ F* Opnog~Og.

nf — nf —
Proof. This is [Nek07, Proposition 2.10]. O

Applying Lemma VII.1.5.3 to (VII.2) yields an isomorphism of groups:

COROLLARY VII.1.5.2. Let § be any non-zero ideal of O prime to S and not dividing

Iy. For any Op-ideal n C Op, we have:
DX O:Ordp
Gal(k(up) /K () ~ o~ [ prn

nf vESpec(OF): puln O’U,OrdFv(fn)

VII.1.6 Interlude on orders

Define the Artin symbol,

<o E) —1 if p, remains inert in F,
Po 1 if p,, splits in F,

where 0 is the different ideal of E. For p, € Spec(Op), with v ¢ S (in particular
unramified in E/F), set F*(v) := Op,/p¥. When k = 1 this is the residue field of Op,



VII.1 Main theorems on distribution relations 195

whose size is g, := #F*(v). For any integer k& > 1, set IF*(v)[e] := F¥(v)[X]/{X?) to be
the infinitesimal deformation F*(v)-algebra and set EF(v) := Op, /p*Op,. We then have

ring isomorphisms

a quadratic extension of F!(v) if (Z—f) = —1,

El(v) ~

F(v) & F!(v) if (;—E> —1.
Here, we summarize a few facts on Op,-orders of E,.The map that sends an ideal p* C Op,
to the order O, ., = Op, + 'O, induces a bijection between the set of ideals of Op, and

the set of O -orders in E,. These orders are all Gorenstein and local whenever ¢, > 1

with maximal ideal B, ¢, := p,Opc,—1 and

OU,CU /;’B’U,Cu = Fl (U)
When ¢, = 0, the order O, is only semi-local if v splits in £, since O, ~ Op, ® Op,.

Let Tr: O, — Op, be the usual trace map z — z +Z. Let o, € OEU be any generator
of the rank 1 Op -module ker Tr*, therefore @, = —ay,, a? € Op, and for every ¢, > 0 we

have O, ., = Op, @ piroy,.

LEMMA VII.1.6.1. Let ¢ > 0, we have an isomorphism of groups
X

o
O_O ~ E(0)* /F(v)*.

Proof. Consider the following composition of reduction maps

Op, = O,9 — EF(v)* —— EF(v)*/Fk(v)*.

v

The quotient map of rings O, — O,0/p50,0 induces a surjective homomorphism of

X

groups O — (O 0/p50,0)" with kernel 1+ p5O,, i.e.

0;0/1 + Pf,@v,o = ((sz,O/IJg(Qv,O)>< .
But since the diagonal image of Op — O, o/p¢O, 0 is precisely F*(v), we deduce that the

kernel of the following composition of reduction maps
f:0g, =0,0 — EF(v)* — EF(v)*/F*(v)*.
is precisely

O;<1 + szU,O) - Oz>)<,c L

8For example, if v split then one has a decomposition O, ~ Of, ® OF,, such that 7 € Gal(E/F) (or
just the complex conjugation since we have identified E with 1 (F)) acts by swapping the components.
Therefore, ker Tr = OF, - (1, —1) and one can take o, = (1, —1), in addition, observe that (1, —1) = —(1,1)
and (1,—1)? = (1,1) € Op, where O, is embedded diagonally in Op, .
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LEMMA VII.1.6.2. Let ¢ > k > 0, we have an isomorphism

O/ Ofcin = (F*(v)[e]) " /F*(v)"

Proof. As in the previous proof, consider the quotient map of rings O, . — O, ./p*O, ..
induces a surjective homomorphism of groups O, — ((’)v,c /pk U,C) with kernel 1+p*0, .,
ie.

OF /14 p500e = (One/P500)
We may also consider the map of rings O, cyx — Op et/ pv e 1t is clearly surjective and

induces the isomorphism of groups

c+k/(1 + pkov c) = (Ov,c+k/p50v,c)x .
Therefore,
/OU ct+k — = Oljc/( + va’UC /(9 c+k/ + vaU C)
(Ov c/pkov c) /( vc—l—k/pkov c)
~ (Ov,c/pﬁov,c) /(OFv/pﬁon)
Recall F*(v) = Op,/p*OF,, and consider the homomorphism of rings F*(v)[X] —
Oue/PEO, ., given by X — (e, mod p*O, ). The kernel contains (X?) (because

¢ > k) and gives a surjective map between two sets with the same order. Hence, for any

¢ >k > 0 that
07./O%, 1 = (FW[e)” (0. T

In particular, G, := E'(v)* /F'(v)* ~ O, /O, is (cyclic if v is inert in E/F) of order
qv — <°—1E)>, and G,(e) := F'(v)[e]*/F'(v)* ~ OF,/O) ., . Finally, for every ¢ > 0, we
have the following short exact sequence (of abelian groups)

X X X
1 \ Ov,l \ OU,O \ OU,O 1
4 OX 4 OX 4 OX )

v,C v,C ’U,l

0:1(0 _ c—1 _ c—1 DE
#(o) oo e =a (- Gr))

VII.1.7 Galois groups

thus

DEFINITION VII.1.7.1. Set

P :={p € Spec(Or): p is unramified in E/F,p & S,p1¢1,pOr 1 L},
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and let Py, (resp. Pin) denotes the subset of P of prime ideals of F' that are split, (resp.
inert) in E/F.

Denote by N' = UQl/\/’T = UT21 Us=1 (/\/;sp -/\/;2_5) the set of square-free products of ideals
n P:
Vr>1: N7 = {py---p,: p;j € Pr distinct} for ? € {in, sp}.

So in particular, one has:

PROPOSITION VIL.1.7.1. Let f=1];p; € N”, and p € P prime to f, i.e. pf € N1,

(i) The extension KC(pf)/KC(f) is of degree (g, — <Z—’j>)/u(r), where

u(0) = [EX NAJ 01 : F¥] = c[05 N D1 : OF], with c € {1,2}
and u(r) =1 ifr > 1.

(ii) Define
K(§) = K(p1) - K(py),
with K(1)" = K and set G(f) := Gal(K(§)'/K). The canonical map
G(f) —— G(p1) x - x Glpy),
is an isomorphism and we have [K(f) : K(§)'] = w(r)u(0)" 1.

Proof. (i) If r > 1 this is a special case of Corollary VII.1.5.2, which says

Gal(K(pf)/K()) = G,
thus of order ¢, — (2—?) If r = 0, recall that by (VII.2) and since pOpg t Iy, we have an

exact sequence

SR B G GallK()/K), (VIL3)
hence, the extension IC(p)/KC is of degree (g, — <Z—f))/[EX NAL O X

(ii) When r = 0 this is trivial. If » > 1, the same proof of [Nek07, (ii) Proposition 4.10]
gives the desired statement, which is derived from Lemma 4.11 in loc. cit.”. Finally, again

by (the proof of) [Nek07, Lemma 4.11] we have for r > 1

() - K(5)] = | EX N AF 07 /F*| = u(0)y . O

Yapplied to (with the notation of loc. cit.)

G=901/0;=90y,..p,,G; =90 /9;,G; =90, and A= E* NA} OF /F*.
P )
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VII.1.8 Global to local Galois/Hecke action on cycles

We have a surjection (see §V1.12) of T'(A}) x Hg-modules

Teye: ZIHY(AP\G(Ay)/K] — Z[Zc.x(H)].
The left-hand-side module is factorizable (see [GH19, Def. 5.8]), i.e.:

!/
ZIH (A;)\G(Aj)/K] = ZH" (Fs)\G(Fs)/ Ks] © QQ ZH" (F,)\G(F,)/ K],
vgS
where, ®;¢ o is the restricted product with respect to the elements'’

{[1)o € H*(F\G(F,)/Ko}ogs,
and the equality above intertwines the action of Hx (resp. T'(A;)) with the action of

Hrs ® ®Hm (resp. T!(Fys) x Hll(Fv)),
vgS vgS
where, Hr, = Endzjgry)Z[G(Fs)/Ks] and Hg, = Endzigr,)Z[G(F,)/K.], v € S.

where ®Z§zs is the restricted product with respect to

{Idg(r,)/k, ogs  (resp. {T"(OF,)}ogs).

VII.1.9 Main theorems on distribution

For every place v in Py, corresponding to the prime ideal p, € Ny, let w be the place of
E defined by the embedding ¢,: F — F, fixed in §VI.1. We denote by B, the prime ideal
of O above p, corresponding to the place w, and set Fr,, for the corresponding geometric
Frobenius''. Let Frob,, € T'(A;) be any element such that Art(Frob,,)|p(cyune = Fry,

where E(00)“™" is the maximal unramified at w extension in E(00).

THEOREM VIIL.1.9.1. With the above notation, we have

H,(Frob,)([1],) =0 mod ¢;7" (¢, — 1) in Z[g; |[H* (F,)\G(F,)/ K],
where H,, is the Hecke polynomial attached to Shi (G, X) at the place w of the reflex field
E=E(G,X)(see VII.2.3).

As a corollary of Theorem VII.1.9.1, we obtain local horizontal relations in Corollary

VI1.2.5.1, from which we derive the tame relations

THEOREM VII.1.9.2 (Horizontal relations). Set & = 34,. There exists a collection of

0The notation [g],, (g € G(F,)), is for HY*(F,) - g - K,, € HY* (F,)\G(F,)/K,.
"'Which induces = — z~% on the residue fields of E" (resp. E%" and EY™).
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cycles & C ZgF)[Z2a,x (H)| defined over K(f) (constructed in §V11.5.1) such that for every

place v € Py, with p, 1§, we have

Hy(Fro) - & = Tricgp/a() &pui
where, H, € H, (Z[gF"])[X] is the Hecke polynomial attached to Shy (G, X) at the place

w of the reflex field E = E(G, X)) defined by t,.

VII.2 Proof of local distribution relations in the split

case

Let v € Pg,. We recall once again that an embedding ¢, : F < F, has been fixed in §VI.1.
Let w the place of E' above v determined by ¢,, and w its conjugate. We abuse notation
and also write w for the place above w determined by this choice in any field extension of
E contained in the fixed algebraic closure F. Let w, be a uniformizer for F, = E,,, g, for

the cardinality of the residue field and p for the rational prime below v.

VII.2.1 Normalization isomorphism in the split case

We identify the group U(V),p, x UW),p, with GL(V,)/p, x GL(W,)/r, as follows:
Recall that for any Hermitian E-space V
UWV)(F,) = {9 € GLOV)(E ©@r F,): ¥u(92, 9y) = u(2,y), Yo,y €V ®F F},
where 1, = g, (see footnote | in on page 161). We have
E,=FE@prF,=FE,®FEz~F,®F,,
where, the action of complex conjugation on the left-hand side corresponds to the involution
(s,t) — (t,s) on the right-hand side. Thus, one has V ®p F, = V,, ® Vg, and
GLV)(F ®fr F,) = GL(V,) x GL(Vg) ~ GL(V)(F,) x GL(V)(F,).
The hermitian form v, takes values in E, = E,, ® Eg, write 1, = (1, %) for its two
component. For any z,y € V ®p F, = V,, ® Vg, write v = x, + v and y = v, + Yw-

Recall that the original hermitian form ) is semi-linear on the right. By definition
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wv(x7 y) = <¢w (I‘7 y)7 ¢E(‘T7 y))? accordingly we have

U(z, ) Uy (Tw, Ya) + Yo (Tw, Yu) + Yo (Tw, Yu) + Yo (25, Yo)
2y (2, ya) + Yo (T 50)

= (Yu(Tw, Yo), Yo (tw, Yo)) + (Vo (T, Yo ), Vo(Tw, Yu))
= (Yu(@w, ¥w), 0) + (0, Ya(
)

= (@Z)w(l'w, yw) ww<5€w7 yw)
For (1), we have used the fact that ¥, = 0 on V,, x V,, and Vi X Vi. To show this,

Tw, Yuw))

let z,y be any elements in V,, then = = (1,0)z where (1,0) € F, ® F,, so ,(x,y) =
(1,002, (1,0)y) = (1,0)(1,0) ¢ (2,y) = (0,0)t,(z,y) = 0. We show similarly the
annihilation of 1, = 0 on Vg x Vg. Accordingly, we have

i. ¥, =0o0n VzxV and V x V,, and induces a perfect pairing ¢,,: V,, X Vi — F,.
ii. Yz=0o0nYV, xV and V x Vg, and induces a perfect pairing ¢5: Vi X V,, — F,.
i, Yo(Ta, Yu) = Yuw(Yuw, Tw), since ¥, (z,y) = 7(¥y(y, z)).

Let g = (g1, 92) € GL(V,) x GL(Vy)

Uo((92, 9y)) = v (91, 92) (0w + 7w), (91, 92) (Yoo + Yw))
= Uy (120w + 922w, G1Yw + 92Yw)
= (Vu(912w, 92Yw), Vu(92%w, G1Yw))
= (Vu(91%w, 92Yw), Yuw(91Yw: 9277w))
Now, if g = (g1, ) is in Uy,(F,) C GL(V,) x GL(Vy), then

bo((97,99)) = ¥o(2,Y) = (Cu(@w, ), Yu(Yu, 7))
Hence, g = (g1, 92) € Uy, (F,) if and only if 1y, (¢1%w, 92¥w) = Yu(Tw, yz) for all z,, € V,,
and yz € V. The discussion above shows that the projection g = (g1, 92) — g1 defines an
isomorphism U(V)(F,) ~ GL(V,,) that is actually defined over OF,. Now, since w is the
place of E corresponding to the fixed embedding ¢,: F < F,, there is no ambiguity in
writing V,, as V), and viewing it as a vector space over F, = F,,. Therefore, we get the

desired identifications.

REMARK VIIL.2.1.1. If we follow Remark VII.1.2.1 and pick up an Og-lattice Ly in W,
Lpin D and Ly = Lw & Lp in V, then working with Hermitian spaces over O, gives

an identification:

HV,OFU ~ GL,11,0,, and HW:OFU ~ GL, 0.,
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using the previous formulas throughout. We will retain this notation in §VI1I.2.

As we have pointed out in §VII.1.6, under the identification E, ~ F, ® F,, the maximal
order Op, of the étale algebra E, identifies with Op, ~ Og, ® Op, ~ Op, & Op,. The
groups

Ulle) = v(0,.) = v(Op, + @0g,°) = {(z,27"): 2 € 1 + w¢Op,} for c € N,
defined in §V1I.1.3, yield the decreasing filtration (H, := det™(U}(c)))een, on H(F,). The
E determinant map on U(x) becomes under the isomorphism U(V')/p, ~ GL(x),p, the

usual determinant map, and the groups U!(c) become 1 + wOp, .

By abuse of notation, we will also use the notation H,. for the corresponding subgroup

det ' (14 @w¢Op,) C GL,(F,) via the isomorphism H(F,) ~ GL,(F,) fixed above.

VII.2.2 Action of Frobenii on unramified special cycles

Let g € G(Ay). Assume that the field of definition of the cycle 3, is unramified at v. The
description of the Galois action on special cycles in §V1.15 using H(A ), together with
the discussion in §VII.2.1 imply that the action of Fr, € Gal(EY"/E,,) (the geometric

Frobenius) on the cycle 3, is given by

Frw '3g = 5AU(FrobU)~g7

where, Frob, € GL(W,) ~ U(W)(F,) is any matrix verifying

ordg, (det(Frob,)) = 1, e.g. Frob, = diag(w,,--- ,1),

and A, is the composition of the following natural embeddings:

Ay UW)(F,) = UW)(Apy) — UV)(Aps) x UW)(Agys) = G(Ay).

VII.2.3 The Hecke polynomial for split places

As usual, to ease notation, let x denote some/any element in {V, W}. We continue with

the fixed place v € S of F' that splits in F to ww.
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VII.2.3.1 A local pair

The choice of an embedding @ < F, extending the distinguished fixed embedding
ty: F, — F, induces an identification:

Hom(F,R) = Hom(F,Q) —— Xp, = Hom(F, F,)

L > Ly O L.

We have

G, 7, ~ H G,; where G,;=GL(*®F,)~ GL(dimg+)z,.
TEERU
Recall that the conjugacy class of u;, with h = hg, X hg, € X is independent of the

choice of h and is defined over the reflex field £ (§VI1.5), hence [up] € M(FE). Now

using the fixed embedding E —— F <~ F,, we get elements 1, ,] € Mg, (F,) and
(1] = [pve © pwo] € Ma(F,), where p, , is given on F,-points by

t
Mo - Gm7fv — va t+— 7IddimE *y 0T 7IddimE*

IddimE *—1

The only nontrivial component is the one corresponding to the distinguished embedding
t1 under the identification Hom(F, Q)~X Fo. We will then write by abuse of notation

tho: Gz, — UV )z, x UW)g, given by:

m,Fy

t t — —
t—> , e T(By)(F,) x T(Bw)(F,),
1n 1n—1
Here, we have used the identification U(x) 7, ~ GL(xy) 7, given by the choice of the
place w over v, accordingly T(8,), identifies with the maximal F,-torus of diagonal

matrices in GL(dimg x)z, with respect to the local basis 9B, , induced from the fixed

global basis B, (§VI1.4).

Note that [u,] is independent of the choice of ¢, and is invariant under the action
of Gal(F,/E,) (E, = F,), thus, by [Kot84a, (b) Lemma 1.1.3] one finds that [u,,] is
actually an element of Mg, (Ey) = Mg o (F,), i.e. defined over F),. In fact, the geometric

conjugacy class [in.] € Ma, (E,) contains a cocharacter
Gm,(’)Ew — gOEw7

defined over the valuation ring Op, (See [Kim18, Lemma 3.3.11]).

In summary, we get a pair (Go,, . [in,]) = (GLys1 0y, X GLy oy, . [j1,]), composed of

F,-reductive group and a minuscule G(F,)-conjugacy class [us] € Mg, (F,). Moreover,
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if we make the standard choices'”

T, := {diagonal matrices}
and
B, := {upper-triangular matrices} C GLy 41,0, X GLy 0, ,
then the cocharacter yy, , given above, is the unique one in the class [uy ] that is dominant

with respect to B,,.

Following §1V, we will attach to the pair (GLy41,0, X GLy oy, [1n]) the Hecke polyno-
mial H, (X) with coefficients in the Hecke algebra

H(GL"JFl(F”) // GL"+1<OFu)7 Z[qilﬂ]) X ,H(GLH(FU) // GLn(OFv)ﬂ Z[qilﬂ])'

v v

VII.2.3.2 Dual group

The complex dual of GL, 41,5, X GL,, p, is

GL,415, X GL, 5, = GL,11(C) x GL,(C).
Let (]§w, 'T‘w) be the standard Borel pair dual to (B, T,), that is the upper triangular

A~

matrices and its maximal torus of diagonal matrices. For convenience, we write B,, =
B,1 x Bys, Ty = Tyy x Ty, and W(T,,) := W(GLys1 (C) x GL,(C), T,,) for the Weyl
group. The Galois group Gal(F*/F,) acts trivially on dual of GL,, 11 p, X GL, g,, since

it a split group, i.e.

HGLu1p, x GL, ) = GL,11(C) x GL,(C) x Gal(F*"/F,).

VII.2.3.3 The character [,

~

Under the identification X*(T,,) = X.(T,), the Weyl orbit of i, corresponds to a Weyl
W(T‘w)—orbit of characters of Tw. There is a unique iy, € X *(Tw) in this Weyl orbit that
is dominant with respect to the Borel subgroup ]§w, and it is explicitly given on C-points
by

,ah,v: Tw<C) — Ca (diag<zla T :Zn+1)7diag(ziﬂ T 72’;7/)) — lei'

12We use a subscript w here, to keep track of the place w aboce v used to indentofy G, with
GL’VH-LFU X GLva.
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VII.2.3.4 The representation

The representation

r: GLu41(C) X GL,(C) —— GLy11),
we are interested in is the irreducible representation whose highest weight relative to
the Borel pair (B,,T,) is Hno |[BRI4, §5.1]. Let 79 be the standard ?-dimensional
representation of GL»(C), then r is the representation on the 2-fold tensor product

Tni1 ® 1y, defined as follows, for any g = (g1, g2) € GL,41(C) x GL,(C),

T(.g) = Tn—i—l(gl) & rn(g2>‘
Finally, extend r to a representation of “(GL, 11 r, X GL, ) (also called r) by letting

the Galois group act trivially everywhere.

VII.2.3.5 The Hecke polynomial

VIL.2.3.5.1 Definition. Following Definition I'V.3.0.1, we attach to the pair (G, , [fin,0])

the polynomial

Hy(2) = det (z - qf,“h‘“’p”>7“(g)> € C[GLy;1(C) x GL,(C)][2],
where, p, is the halfsum of all positive roots of (B, Ty,), thus (., p») = 2n — 1. The
ring of coefficients of this polynomial, is the ring of class functions on GL,,1(C) x GL,(C).
A class function on GLy41(C) x GL,(C) restricts to a Weyl-invariant function on T,,.
Conversely, by a classical argument of Chevalley, the subalgebra of Weyl-invariants functions
on T, consists precisely of functions which arise from class functions on GL,1(C) x
GL,,(C). Therefore, one can identify H,(z) with a polynomial in C[’/I\‘w]w(rfw)[t], which,

abusing notation, we continue to denote by H.,,:

Ho (1) = det (z — g (t)> € C[T,][t].
Let t = (diag (1, -, Zpy1), diag (y1, -+ ,Yn)) € ’T‘w, the polynomial then identifies with

n+l n

Hy(t) = [TT] (z = @ 'wiy;) € CIT[1).

i=1 j=1
Here, z;y; denotes the function z;y;: T,, — C defined by

(dlag (xla U 7$n+1)7 dlag (yh e 7yn)) = Lil;-
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Now, using the identification® C[T.,] ~ He(Tw(F,) J Tuw(Or,)), this function corresponds
w(F

to the element 1, 1)1, € He(Tw(F) J Tuw(OF,)) where

g; =diag(1,...1,@,,1...,1) and h; = diag(1,...1,@,, 1,...,1).
i— j—
Since the Weyl group W(T,) permutes the z;’s and y;’s, it is clear that H,(t) €

C[’i‘w]w(fw)[z]. Subsequently, using the Satake isomorphism (Theorem [11.10.0.1)

CIT )" ™) ~ Ho(Ty(F) [ Tu(Op)V ™) ~ Ho(G(F) | G(OR,)),

we may also view H,, as a polynomial with coefficients in the local spherical Hecke algebra.

VII.2.3.5.2 Explicit polynomial. In the remaining part of this section, we will give
an explicit formulation for the Hecke polynomial with coefficients in the spherical local
Hecke algebra, i.e. we will invert the Satake isomorphism. Let us begin by rewriting this

polynomial in a more suitable form:
Hw(t) - HH ( 12)77, ! zyj)

( 1) q(2n 1)kX yk n+1— k)

I

_ Z Z H 2n la,Xaly ) n(n+1)—k

k=0  (a;)€pn (k) i=1
where, p, (k) := {(ai)1<i<n € N: >0 a; = k,0 < a; <n+ 1} and X5 is the symmetric

monomial associated to the monome xyxy - - - x7, for 1 <? < n + 1. Here, the symmetric

permutation group .S, acts on the set of partitions p,(j), and yields

n(n+1)

Hw(t) = Z Z H al 2n MlXaly ) n(n+1)—k

k=0 (ai)€pn(k) i=

n(n+1) n
— Z ( Z (_1)Zaiqgn—12?:1 a; H Xai X H Z n (n+1)—
k=0

(a;)€pn(k)/Sn i=1 i=1 j=1
n(n+1) n
S D OIS | £ | D SUAIEEs
k=0 (a:)€pn (k) /Sy i=1 i=1 j=1
n(n+1)
_ Z (_1)qu]f(2n_1)( Z HXaz Hy(%) n(n+1)—k
k=0 (@)epn(k)/Sni=1  i=1

13This identification is obtained as follows: On one hand, by definition of the dual torus, the ring
of algebraic functions on T, are precisely the elements of C[X.(T,)]. On the other hand, sending
any F,-algebraic cocharacter x: Gm r, — Tw t0 1y(m, )T, (0p, ), Yields an identification C[X.(Ty)] ~

HC(Tw(Fv) // Tw(OFu))'
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where, Y'(*) denotes the power sum symmetric monomial 7 v/, for ? > 1. Set Y> for the
symmetric monomial associated to the monome gy - - - y7, for 1 <7 < n. For any k > 1,

the Newton—Girard formula says:

(—1)%kY, + SN ()Y YO i1 <k <,

y k) —
S (Y Y @ it n < k.
There exists then, a polynomial in n variables Qx (21, ,2,) € Z[21,- -+, z,] such that

the power sum Y® is given by

Y = QuYa,..., Y.
Set T}, for the Hecke operator GL,(Op,) - diag(w,, - ,w@,, 1,---,1) - GL(Op,), for
————

k
x € {V,W}. The Satake isomorphism C[T,]" (Tw) ~ ~ He(G(F,) ) G(Og,)) yields the
following identifications
_ (n+1-k)k
Xe,(1<k<n4+1) «——q > Ty,
(VIL4)
_ (n—k)k
Yk, (1 < k < TL) < > Qo 2 Tkz,W

Indeed, for any fixed integer 7 > 1 and every integer 1 < i <? we consider the following
minuscule' cocharcater \;: G, r — GL- given on F, points by
\ii B —— GLy(F), t — diag(t, -+ ,t,1---1).
——

i—tuple
The above identification is an immediate application of Proposition [V.4.0.1, where we
also use the fact that the Modulus function for GL, with respect to the Borel subgroup

ai)) _ q_ 23:1(?+1_2j)aj

of upper triangular matirces B; is given by dp,(diag(w , for any

diagonal matrix diag(w®) € GL:(F,).

Consequently we can now write the Hecke polynomial with coefficients in the spherical

local Hecke algebra:

n(n+1) n n
(7L+1 al)al a _
H, (t) _ Z ( 1)kq5(2n 1)( H QU ai,V ® H T{S[/Z))zn(n—i_l) k
Jj=0 (ai)Epn(k)/Sn i=1 i=1
n(n+1) i 3k(n—1)+X 7, o? (@ ) -
=2 (Ve 7 () HTaz,v®HT 7z
Jj=0 (al)Gpn(k)/Sn =1
_n-1 _(n—j)j
where, T = Qu, (qv *Tw,.oovqw > Thw,... >Tn,W) )

ExXAMPLE VII.2.3.1 (Case n = 1). we obtain in this situation the following polynomial

Hy(t) = 12 — ¢}/ (21 + z2)ynt + g zay? € C[T,][1],

14 e. the representation Ad o \; of G,, on Lie(GL7) has no weights other than 1,0, —1
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which corresponds to the Hecke polynomial

Hy(z) =2 = (T @Tiw)z+ ¢, (Toy @ Ty,
where Ty v, To v € C.(GL2(F,) ) GL2(Op,),Z) are the Hecke operators corresponding to
GL(Or,) ding(@,, 1) GLa(Oy, ), diag(w,, ) G (O,
respectively, and T{ y, € C.(F) /OF, | Z) is the Hecke operator corresponding to w O .
EXAMPLE VII1.2.3.2 (Case n = 2). In this case, we have
2
9

3 9
H,(t) = H(z3 — @2 X19:2" + 4, Xoyi 2 — ¢2 Xay;)

i=1

3
=20 — @ Xa(y1 +12)2° + @ (Xa(yt + v3) + Xiyiye) 2*
9
— ¢ (X1 Xoyya(y1 + y2) + Xs(y? +13))2°
+ ¢ (X Xsyry2(yt + v3) + X5 (y10)?) 22

15
— ¢ (XoXs(y192)* (91 + 92)) 2 + 43 X5 (1192)°
Using (VI1I.]) we also get the identifications

vl +ys = (y1 +y2)* — 2y199 < ) q;%TﬁW — 2T w
Yy = 1+ 92) (5 + 92)? — Byase) > @ *Tow (g TRy — 3Tow).
Therefore the Hecke polynomial is given by
Hy(t) =2 =Ty @ Tywz’ + q(Toy @ (Thw — 20 Tow) + oy @ Tow) 2"
— ;1@ Tyw)(Tiy Ty © Tow + 0Ty @ (T — 3¢, )) 2°
+¢i (1@ Tow) (Tl,VT3,V ® T12,W —2¢ + T22,v ® Tz,w) 22
—q5 (TQ,VTS,V ® TLWTQQ,W)Z

+ ¢ T5y @ Ty

VII.2.4 Split local setting

To ease the reading, we switch to a local notation and omit all subscripts v and w.

Using the fixed basis for V' (compatible with W), we get to the following situation
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H=AGL, — G = GL,,; x GL,,, where the embedding on the first factor is given by

1
We would like to describe the quotient H\G/K where K = G(OF). Set K; = GL,,11(OFr)

and Ky = GL,(Op). For every (g1, 92) € G, we have H(g1,g2) = H(1(g2)"'g1,1) € H\G.
This induces a bijection H\G ~ GL,(F), given by H(g1, g2) > ¢(g2) 'g1. The natural
right action of G on the quotient space H\G corresponds to the following right action on

GLn+1 (F)

V(91,92) € G, Vg € GLoi1(F), g (g1,92) = t(92) "' 9.1 € GLypi1 (F).
This isomorphism of right GG-spaces, induces the following bijection
H\G/K ~{g-K: g € GLy.(F)}

~ {(Ky) g Ki:a € GL,1(F), }

~ 1(K5)\ GL, 1 (F)/K;.
Let B; € GL,,4; (resp. By C GL,) be the Borel subgroup of upper triangular matrices.
We denote their respective opposite Borel subgroups by B; and B,. Consider the Borel
subgroup B~ := B; x By, C G. Let U (resp Uy) be the unipotent radical of B (resp.
B;) and T = T; x Ty C B™ be the split maximal torus where T; (resp. Ts) is the split

maximal diagonal torus of GL, 1 (resp. GL,). The set of B~-antidominant diagonals is

T~ =T, x Ty, where
T, = {diag(@™)1<k<n+1, : a; € Z such that a; > --- > a,11} - T1(Op),
T2+ = {dlag(wb’“ 1<k<n, - bz € 7Z such that bl S cee S bn} : T2(0F>
PROPOSITION VII.2.4.1. Every class in H\G/K admits a representative of the form
w 1

3 GG,
wb"

for some ¢ € Zi and (diag(w“k)lgkgnﬂ,diag(wbk)lgkgn) €T~ (with a,yq :=0).
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Proof. Let us first prove that the set

4 A
wh

o cc€lya,>b,andk<l=a,—a >b,—b >0,

an wbn

1
\
is a set of class representatives for the quotient

J

L(FK2)\ GLy 1 (F)/ K.
Observe that ¢(GL,) X x1.,+1(G,) is a Levi factor of the parabolic subgroup:

* L *
GL, GL,
P .= = X . ,
G,, G,, 1

where, the second factor of the Levi decomposition above is the unipotent radical Up of P.
Therefore, every class in ¢(K3)\ GL,1(F)/K; has a representatives of the form w(g)u
for some ¢ € Z, g € GL,(F) and u € Up(F). By the Cartan decomposition for GL,,(F),
we know there exist k, k' € K, such that k'gk = diag(w™)i1<k<,, with a; > -+ > a,.
Hence

L(Ko)wguKy = oK) (K gk)o(k) M u (k) K.
Since «(k) " 'u (k) € Up(F), then each class in t(K3)\ GL,41(F)/K; has a representative

of the form
o whd,

gn wb;ldn
1
For some ¢, ay, by, € 7 such that k <[l = a, —a; > 0 and, d € Op.

e d; # 0 : Suppose some of the d;’s is zero. Using a unipotent matrix from the right

we can replace Column,,; by Column,; + Column;. Thus we get a new matrix

with d, = 1 and by is equal to ay.

e d;, =1 : Suppose then that all di’s are non zero. Conjugation by the matrix
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diag(dy,...,dn, 1) € t(K>3) shows that one can ignore the dj’s:

b1

e a, > b, : If we have a, < b,, we may change b, to a, by replacing the Column,,

by Column,,,; + Column,,.

e (*)by >--->10,: Let k <[ and suppose that b, < b;. We can find a matrix in ¢(K3)
taking Row; to Row; + Rowy, thus we get in the & row wb +@w” = wb (1 4+ =),
We kill the invertible element 1+~ € O} by adjoint action of a diagonal matrix
in ((K3) having (1 4+ @”~%)~! in the I"" component. Now we kill the element that
appears in the ([, k) position of the new matrix: use the action of K; on columns to
take Columny to Columny, — % (1 + ww”%)~*Column;. We thus have changed

the matrix by replacing -only- the old b; by 0.

® ap, —a; > b, — b : Fix a K < n. Suppose that for some [ > k we have ¢;; =

(b, — b)) — (ag — a;) > 0. Let I’ be such that ¢y = max;>y cx;. Take Rowy to

Row;, + w™ % Rowy = Rowy, + @™ ~rRowy, (ar — ay > 0).

Note that for every | > k we have

(bk — Ck,l’ — bl) — (ak — (ll) S 0.
We clear the component appearing in the (k,) position by replacing Column; by

5

Columny — Columny. Therefore, we may'® replace in the old matrix (only) by by

by, — ciy. By doing so, we do not alter the previous required inequalities.

Suppose there is an [ > k such that the new b, is < ;. Using the step (*) above, we
saw that we can replace b; by bx. By doing so, we do not alter the required inequality

(bk — bl) — (ak - CLZ) S —(CLk - (ll) S 0.

5The last coefficient of the k-th row is w? + w® t@~% which is not of the form w’ . Writing

this as w T =% ¢ with u invertible, one can then use yet another conjugation to get it to @b with
by =br +ar —ay =by —cp .
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w wh
Now, every class ¢(Ky)w® .| K, corresponds to
wr @
1
o 1
. . w_bl_c.
H _ -, K € H\G/K,
wanfbn 1 .

.wfbnfc
w
such that —b; <--- < —b, and a; — by > --- > a, — b, > 0. This completes the proof of

the proposition. O

LEMMA VIIL.2.4.1. For € {1,2}, let

wal,* ' 1

gx = , ,
w1 g
b
o
for some a4, by «, Cx € Z such that for x € {1,2} the sequences (ay )i is non-increasing
and (bs)x is non-decreasing. If Hgy K = Hgo K then ¢; = ¢ and agy — bry = ago — bio

foreach1 <k <n.

Proof. Suppose that the classes of g; and g, are the same in H\G/K. This is true if and
only if there exists ky € Ky and k; € K7 such that

wa1,1—b1,1- w—bm wa1,2—b1,2- w_bl,Z
—1 —
u(k2) . : ki = g :
wan,lfbn,l w*b'n,l wan,2*bn,2 w*bn,Z
w w

It is clear that ky € K1 NP(F), i.e.

U

ki

Up,
Un+1
Here, k| belongs to Ky and u,4+1 € Of. The equality above implies w® = u, 1w (i.e.,
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¢1 = ¢z) and
wa1,1—b1,1. wa1,2—bl,2.
. ,
kQ . . kl -
'wan,lfbn,l .wan,2*bn,2

Since both diagonal matrices are Bj-antidominant and represent the same class in

K>\ GL, (F)/K, they must be equal. O
LEMMA VIIL.2.4.2. For any integers c,aq, ..., a,,b1,...b,, consider the matrix
wt 1
wbl.
g=| = . , ed
w1 "
oo
1

The stabilizer Staby (gK) is equal to

{A((hij)) € H: hyy € Op,hy; € w™™ e bi=b O\ £ j,

Zhij S 1+w‘“(’)p,1 <Vi < n}

j=1

Proof. Set diag(a) = diag(w®, ..., @™, 1) and similarly diag(b) = diag(z®™, ..., w). A

matrix h = (h;;) € GL, (F) verifies A(h) € Staby(gK) by definition if and only if
diag(—a)ug 't(h)ug diag(a) K, = K;

diag(—b)h diag(b) K = K,
which is equivalent to

w M (—1+ Z;-Ll ha;)
diag(—a)h diag(a) : _ _
S € K; and diag(—b)h diag(b) € K.
w (=1 + Zj:l )
1
Therefore h € diag(a) K, diag(—a) N diag(b) K> diag(—b) and for all 1 < i < n we must

have 377 | hij € 14+ @ Op. This proves that Staby (g/) is equal to

{A((h”)) e H: h; € OF, hij € w90 and Zh” el +wai0F7 1<Vi < ’fl}
j=1
where, ¢;; := max{a; — a;,b; — b;} for i # j. =

In the following proposition we compute the determinant of H-stabilizers of cosets in

G/K.
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PRoOPOSITION VII.2.4.2. Let c,aq,...,a,,b1,...b, be any integers, and consider the
element
w™ 1
wbl.
g=|=° aF €q.
w1
wbn
1

Set ¢;; == max{a; — a;j,b; — b;} if i # j. We then have det(Staby(9K)) =
~, if there exists i such that a; <0,

Op, if there exists a pair (i,7) such that i # j and ¢;; <0,

1 + gomin(asisisniUeg 1<iZisnh O if ¢, 5 > 0 for alli # j and a; > 0.

\

Proof. For the first two cases, for each ¢ € O} one can give explicitly an element g, € H

stabilizing g K with determinant ¢:

e Let ¢ be an index for which a; < 0. One can take g; = diag(1,...,1,¢t,1,...,1) € Ky,

with ¢ in the i** position.

e Let ¢ and j be indices, for which ¢;; < 0. One can take g; to be the matrix with ¢ in
the i'" diagonal component, 1’s elsewhere in the diagonal, 1 — ¢ in the ij component

and zeros everywhere else.

Suppose now, that for all 1 <4, j <n we have ¢;; > 0 and, a; > 0. In this case a matrix

h = (h;;) belongs to Staby (gK') only if

hij € w0Op, V1 <1 7&] <mnandh; €1+ wmin{ai’cij: 1§j§n’j¢i}OF,Vi <n.

Therefore, for all h = (h;;) € Staby(gK) we have det(h) € 1 + comitlaicis: 1SS} O e,

det(Staby (gK)) C 1 4 gpintesci: ISiA<n} 9
The reverse inclusion is as follows: If min{a;,¢;;: 1 < i # j < n} = a; for some k < n,
then consider for every t € Op the matrix h; = diag(1,...,1+w%t,...,1) € GL,(F). If
now min{a;, ¢;;: 1 < i # j < n} = ¢y for some 1 < k # [ < n, then consider for every
t € Op the matrix h, having 1 + @t in the k** diagonal component, 1’s elsewhere in the
diagonal, —wt in the kI component and zeros everywhere else. In both cases, for every
t € Op, we have h, € Staby(gK) and det(h;) = 1 + cmirfaics: 1<i7isnl which shows the

reverse inclusion. O
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VII1.2.5 Local horizontal relation

We prove a local horizontal distribution relation (Corollary VII.2.5.1) using a local divisi-

bility relation (Theorem VII.2.5.1).

VII.2.5.1 Notation

Let B =B; x By C G be the Borel subgroup with unipotent radical U = U; x U,. The

set of B-antidominant diagonals is T~ =T} x 15, , where

T, = {diag(@w™ )1<k<n+1, : a; € Z such that a1 > -+ > ap41} - T1(Op),
Ty = {diag(@")1<k<n, : b; € Z such that by > --- > b, } - To(Op).

Consider the following Iwahori subgroup

I=LxIL={g9g€K: (g modw)e B}.
Let 4 = A o us € T be the cocharacter coming from the Shimura variety and denoted by
pnoy in §VIL2.3.1. Here pg € X, (T9) is given by t — diag(¢,1...,1). Set Frob := p(w),
see §VI1.2.2 for the reason why we choose this notation. Let U, € Endyp Z[G /K] be the
U-operator associated to 1j,=) € Co(G /) I,7Z). By Theorem [V.5.0.1, the operator U,
is annihilated by the Hecke polynomial H,(X) = Y70 4, X* € (End g R[G/K])[X]

(see §VII.2.3.5). Set }NIw(X) = Ho(¢" 1 X).

Fix the classe [1] = 1- K € Z|G/K] and note that for every k > 1,

U (1)) = U (1)) = > hFrob” - [1],
hel* /u(w*) I+ p(w=F)
where, It =UN1.

We fix for each element [b] in Op/wOF a lift b € Op (e.g. Teichmuller lift). Set
Spi={a=Y 0w € Op: a;=0for all i >k and [a;] € Op/wOp for all i < k}.

LEMMA VIIL.2.5.1. For every integer k > 1, the collection

( 3

A\
-~

(uk,m Uk,b) =

\ Vs
for all (a,b) = ((a1,...,an),(br,...,by_1)) € SP x SP~! forms a complete set of represen-
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tatives for I /p(w®) I+ u(w®)~t. Consequently, for every k > 1

ur(1]) = Z (tra, Vi) Frob® - [1].

(a,b)eSp xSy~

1 @*O0p i " Op 1 @wfOp - " Op
1 Op--oovne Or 1 Op- v Or
X crIt
OF OrF
o .

Any g € I}, can be written as

h

for some h € K; (which is upper triangular modulo w) and (a;) € O%. Therefore

gu(@) I (@ ™) = gu(h™ ) (@) I (™) = var (@) I (™)
with some @’ = (a}) € O%. The right action of u(ww”®) ;" u(w™") on I} can only kill w*Or
in each factor a. This shows that each class admits a representative of the form wuy . that
is unique modulo w*. Similar statement hold for 7. In total, this shows that is S x S;~!

is a complete set of representatives for the quotient u(w®)I*u(w=*). O

VIIL.2.5.2 Divisibility in Z[H,\G/K]

Consider now the following natural surjective homomorphisms of Z-modules over the
group algebra H(G J/ K)[H]"
$o

T

Z|G/K] —2 Z[H"\G/K] — Z[H)\G/K]
where, H" := HY (F) = A(SL,)(F) and Hy C H is the normal subgroup det '(0}) D
H9r, We derive the local horizontal distribution relations (Corollary VII.2.5.1) from the

following result

1%The H x H(G /| K)-equivariance is seen from the identification #(G / K) ~ Endy ) Z[G /| K].
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THEOREM VII.2.5.1 (Horizontal divisibility relation). We have

Ho(Frob) - 6o([1) =0 mod ¢" (g — VRIHN\G/K],  (n>1).

Proof. Recall that U, € Endgp Z|G/K], H,(U,) = 0 and Frob € T'C B’. We have,

H,(Frob) - éo([1]) = 6 ((H.,(Frob) — H,(t4,)) - 1])

n(n+1)
=¢o( Y Au(¢"" VFrob® —uf) - [1])
k=0
n(n+1

)
= ) Axdo ((¢*"VFrob® —uf) - [1])
k=0
where, we have used since A, € Endgjg R[G/K] for the last equality. In order to prove

Theorem VII.2.5.1, it is sufficient to show the lemma below. O]

LEMMA VIIL.2.5.2. For any integer k > 1 we have

®o ((Z/l/]f — ¢"=V) Frob") - [1]) =0 mod """ Y(q — 1)Z[H)\G/K].

Proof. In steps A,B and C of the proof, we will be working only mod H9", and we will

wait until step D to project our calculations mod Hj.

A. We have,

qzﬁ(UZf([l])) = &((tp.a; vip) Frob® - [1]) (Lemma V' /7.2.5.1)

(a,b)eSp xSyt

= Y o((u(vrp) M 1) Frob® - [1)  (A(ugy) € H)

= ¢((uk,afb7 1n> HObk . [1])7
(a,b)esp xSyt

where, a — b= (a; — by, ..., 0p—1 — bp_1,0,) € S} and 1,, = diag(1,...,1) € GL,(F). By
substituting ¢ = (a — b) € SP'", we get
sUs([1])) = ¢"" VFrob" - g([1]) +¢"" YY" ¢((uk, 1) Frob - [1]),

ceSP\{0n}
where the first term in the right-hand-side is the contribution for ¢ = a —b = 01i.e. (a; = b;

for 1 <i<n-—1and a, =0). Therefore,

o= o((Uyf — ¢*"VFrob) - [1]) = "™ Y~ 6((upe, 1,) Frob® - [1])
ceSP\{0n}

1"We sum over ¢ = (a — b)’s. For every fixed c there is ¢*("~1) = |(Op/@w*Op)"~!| choice of pairs
(a,b) € (Op/w*Or)" x (Op/*Op)"~! such that c=a — b= (a1 —by1,...,an_1 — bp_1, ).
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B. Define the following map

£: S — (@)

sending ¢ = (c1,...,¢,) € SP to g, := (e(c1),...,&(cy)) such that (¢;) 1= wr (@) with

£(0) = 0 (note that ordg(¢;) < k — 1 and that e(¢) = 0 if and only if ¢, = 0,, := (0, ...

Put £ := (S} \ {0,}). Note that we can view any n-tuple € € £ as a n-tuple € € S. Set

x/worr @) e OF if x € O \ {0},

lifx=0.

For every ¢ = (¢;) € S} \ {0,,} consider the following two matrices

n

¢ := diag (&' ﬁéil, Cylery .. 8y Gy Gy 1) € Ko N SL,(F),
and -
c = diag (Gn, Eal1 0y Galy L Enlrt, 1) € K.
Therefore, we have
¢ ((up,e, 1) Frob” - [1]) = ¢ (A(¢)(up,, 1,) Frob” - [1]) (since A(e) € H")
= ¢ ((1(C)ug,cc,c) Frob” - [1]) (since c € K1 NTY)
= ¢ ((t(e)upcc, 1,) Frob® - [1]) (since ¢ € Ky N'Th)

A direct calculation yields the equality

n—1

v(C)uy,c = diag () H &L Duge, € GL,u (F).
i=1
For every ¢ € S} \ {0,,}, set

n—1
a(e) = (@ ][ &" mod =*OF) € (Op/m*OF)*.
i=1
The above equality shows that for every ¢ = (¢;),¢ = (¢}) € S} \ {0, }:

a(e) = a(d) and e(c) = () = o((uke, 1) Frob” - [1]) = é((uge, 1) Frob” - [1]).

C. Using this we continue the computation of "4 by regrouping terms over ¢ € Sp \ {0,}

giving the same values by « and ¢.

= gk Z ¢((ug.e, 1,) Frob® - [1])

ceSP\{0n}

=gy > ¢ ((diag (8, 1,...,1) use, 1,) Frob® - [1])

ee€ ﬁeglj {CESI’;: a(c)=pB,¢e(c)=¢}

= "IN " (e B)| ¢ ((diag (8,1, ., Dugeg, 1,) Frob® - [1])

eef BES)
where, J(g, ) :={c € S\ {0.}: a(c) =B, e(c) =€}.
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D. Now we project M € Z[HI"\G /K] into Z[H\G/K]. This gives us

$o(%) = do((Uf — ¢""VFrob) - [1])
=" YN (e B)| o ((diag(B, 1, -, Dugz, 1,)Frob - [1])

eef pesy

="y Y (e Al o (une, diag(57, 1, 1)) Frob® - [1])
ec€ Besy

=" DS (SN 17 B)I) do ((une, 1) Frob® - [1])
ecf ey

We observe that the sum ZBGS; |J (g, B)| is equal to

{ee SE\{0n}: e(c) =g
Let ¢ = (¢;) such that ¢(c¢) = g, which means that for every i, we must have ordp(c¢;) =
ordp(g;). It implies that for each i such that ; # 0, the ¢; = ¢;/@* 47 are such that
ordp(¢;) < k—ordpe;. Hence, by definition of the set S, the set defined by these elements

is described as follows
j=k—ordp ¢;
Z aje’ € OF:a; =0forall j >k — ordre;
j=0
This shows that there exist gF—ordre — gh—ordrei—1 possible choices for ¢; for each such 4

(with g; # 0). Therefore,

|J(§, 5)‘ _ H(qk—ordpai _ qk—l—OI‘dFEi)’
2

BG(OF/kaF)X 7
where the product is taken over the indices 1 < ¢ < n such that ¢; # 0. Since this set is

nonempty for any ¢ # 0,,, we deduce that

Z |J(g,5)] =0 mod (¢ —1),
,BE(OF/kaF)X
and accordingly, for all £ > 1,

¢o (U — ¢*"VFrob) - [1]) =0 mod ¢"" (g — 1)R[H,\G/K]. O

VII1.2.5.3 Local horizontal relation

Recall that H, = det™' (1 + @°Op,), for ¢ € N.

COROLLARY VIL.2.5.1. Set zy := ¢([1]). There exists x € R[H*\G /K™ such that

Hy,(Frob) -z = Tr gz € RIH*\G/K]™,
where, Tri,0p(v) =3 ey b - (V).
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Proof. The action of Hy on Z[H*'\G /K] factors through Hy/H9" which we identify with
O7 through the determinant map. We note that

H,(Frob) - 2o € R[H*"\G/K]",
since, the induced action of O} commutes with the induced action of H,,(Frob) and fixes

o([1]), as det(K N H) = det Ky = OF.

Write
H,(Frob) - zq = Z ayY,

yeHI\G/K
with only finitely many nonzero integral coefficients a, € Z. The stabilizer of any

y € H¥\G/K in H/H* ~ F* is of the form 1+ w@*¥Op, for some integer c(y) > 0 that
we call the conductor of y. We have,

H,(Frob) - zq = Z ayy

yeHder\G/K

=2 > aw

c20 ycHder\G /K

cy)=c
= > wyt), D a4 ) hy
yEHdcr\G/K CZI HoyEHO\G/K hEHO/Hc
c(y)=0 cly)=c

In the third equality, we may sum up over classes Hyy since H,,(Frob)-x is Hyp-invariant. In

the last sum above, choose for each Hy-orbit Hyy with ¢y) > 1 some Hi-orbit H1§ C Hoy.

Set
a .
e ¥ Y Y o X
yeHIN\G/K q c>1 HoyeHo\G/K heH1/H.
c(y)=0 c(y)=c
By Theorem VII.2.5.1, (¢ — 1) | a, if ¢(y) = 0, which gives z € R[H\G/K] with
Try oz = H,(Frob) - x. n

REMARK VIIL.2.5.1. We will denote the element x constructed above by x, to keep track

of its associated place v € Ps,.
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VII.3 Split distribution relations

VII.3.1 Definition of the norm-compatible system

For any f € ./\/STP, set P; C Py for the places of I’ defined by the prime ideals dividing f.
Define
& = u(r)™" - Teye([90,5] © [1°(F) € Q[Za,x(H)]

where, [go,s] := H* (Fs)go,sKs, 1]°(F) := (Quep,2v) ® (Qugsup[1]u) and
[EXNALOF : FX] Ifr=0,

u(r) = ’

1 If r > 1.

PROPOSITION VIL3.1.1. For each §f € Ny, the field of definition E; of & is contained in
KC(f) the KC-transfer field of conductor {.

Proof. Write & = " a;34, (a; € Q) with

9i,s = 90,5, VO € SUP} Giw = o
and z, = ), a;[g;], for all v € P;. The stabilizer of 34, in H(A ) contains (as in Lemma
VIL1.3.1)

SUP
H(Q) - | Ky X Ky x H Kip |
pG’Pf
for some open compact subgroups K;, C K,. Therefore, the stabilizer of & in T'(Ay)

contains'®

THQ) - | Ug.s X UfSUPf < [[vs) | =THQ) - U,
UEPf
and accordingly, Ey, is contained in K(f) for which we have (see §V1I.1.5)

T'(A;)  Agy

Gal(K(f)/E) =~ THQ)U; — EXAf O

]

REMARK VIL.3.1.1. Proposition VI1.5.1.1 and Lemma VII.1.5.2 imply that Es is also
contained in E(c¢if). Therefore, by Corollary VII.1.5.1 any prime ideal of E above an ideal

p € P that is prime to § is unramified in the extension E;/E, i.e.

E; € K(f) C E(co)"™".

18Since by Corollary VI1.2.5.1, we have [z,] € (Z[gE!|[HI"\G,/K,])V+ .
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VI1.3.2 Proof of Theorem VII.1.9.2

For any § € ./\f;;o and any place v, € Py \ P; with prime ideal p,, € Py,, we show here that:

Hao (Frug) - & = Trxpu,5)/K6) Epuof
where, Hy,, € Hg,, (Z[q;'])[X] is the Hecke polynomial attached to Shx (G, X) at the

place w, of the reflex field £ = E(G, X') defined by ¢,,. Indeed, H,, (Fr,, )& is equal to:

= u(r)ilﬂcyCﬂgO,S] ® (Hyp, (Fry,)[1]s,) ® (®v€Pfxv) ® (®U€SU7’fU{vo}[1]v) )

(Cor. VI1.2.5.1) _
"= w(r) ™ ey ([90,6] @ ( Z A Zy,) @ (Quep,tv) @ (Rugsupufest 1v) )
A0 /00 1

vo,0

= u(T)_l Z ﬂcyc([QO,s] X (/\ ' xvo) X (®v€79fxv) & <®U€SUPfU{vo}[]—]v) )
)‘EOUXO O/Ovo 1

= U(T)_l Z ‘Teyce ()‘ : ([go,s] & (®v€’Pvaoxv) & (®v€SUPfU{vO}[1]v)))
A0 /O

vo,1

(Pro. VI.15.0.1) _ Artyw, (N)
= U(T> ! Z 'ﬂ-cyc([gﬂ,s] & (®v€'Pvaoxv) & (®v€SU7DfU{vo}[1]v) )

A0 4/O |

_ Arty (A
=u(r)™ Z Cpuof >

XEOY, /O

vo,1

= (1) T (po P /K P Epoo

(Prop. VILI1.7.1) o
= 2

o€Gal(K(puo f)/K(F))

= Trc(p,.1)/K() Epuof-
ArtE

where, Arty,: By, — Ag; » Gal(E™/E). O

REMARK VII.3.2.1. The methods used in the sections VII.2.5 to prove Theorem VII.1.9.2
for split places, although seemingly too technical, hide a pattern that gives, mutatis mutandis,
local norm-compatible systems for inert places of F' too. The details of these calculations
for the split vertical case and tame/vertical inert cases will appear in a forthcoming paper,

which will also include similar treatment for other embeddings of Shimura data.
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