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Abstract

This paper proves that the U-operator [Bou21d] attached to a cocharacter is a right root of the
corresponding Hecke polynomial. This result is an important ingredient in the proof of (i) the
horizontal norm relations in the context of Gross–Gan–Prasad cycles and of (ii) the generalization
of Eichler–Shimura relations.

1. Introduction

1.1 Origin of the problem

Let F be any p-adic field, q the size of its residue field and $ a fixed uniformizer in the ring
of integers OF . Let T be the Bruhat–Tits building of GL2 over F . This is a connected tree in
which every node has q+ 1 neighbours. Let ◦ ∈ T be a hyperspecial point fixed, K the maximal
parahoric subgroup attached to ◦ and T ◦ := {v ∈ GL2(F ) · ◦ \ ◦}.

The Hecke algebra H(GL2(F ) �K,Z) acts on T ◦ via adjacency operators, in particular the
basic element Tp := 1Kdiag($,1)K , sends a vertex to the formal sum of its neighbours.

Define the operator u◦ ∈ EndZ[K]Z[T ◦] which sends a vertex v 6= ◦ to its successors with
respect to the origin ◦, in other words

u◦(v) =
∑

dist(v′,◦)=dist(v,◦)+1

v′.

Define also the predecessor operator v◦ ∈ EndZ[K]Z[T ◦] sending a vertex v 6= ◦ to the unique
v′ ∈ [◦, v] verifying dist(v′, ◦) = dist(v, ◦)− 1. The operators u◦ verify the following properties

v◦ ◦ u◦ = p IdT ◦ 6= u◦ ◦ v◦ and Tp = u◦ + v◦.

We insist on the fact that the operators Tp, v◦ and u◦ do not commute. An immediate consequence
of these basic properties is that up (resp. vp) is a right (resp. left) root of the Hecke polynomial
Hp(X) = X2 − TpX + p, i.e.

u2
◦ − Tp ◦ u◦ + p = 0 and v2

◦ − v◦ ◦ Tp + p = 0.

The goal of this paper is to genralize such integrality relation to general unramified groups.
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1.2 Motivation

In 1954, Eichler discovered the first instance of the link between zeta functions of Shimura
varieties and automorphic L-functions. Shortly thereafter, Shimura extended Eichler results to
compute the zeta functions of quaternionic curves. Their work was based on the congruence
relation, known now as the Eichler–Shimura relation, which played an important role in the
theory of arithmetic of elliptic curves and modular forms. Later on, in the 70s, Langlands launched
a program that aims to generalize the previous work to compute zeta functions attached to all
Shimura varieties. Gradually a conjecture generalizing the Eichler–Shimura relation has emerged
and was formulated by Blasisus and Rogawski [BR94, §6]. We give its statement below after
setting some background.

Let G be a connected, reductive group defined over Q and let S = ResC/RGm,C. Suppose
we have a homomorphism of algebraic R-groups S→ GR, which satisfies the axioms of Deligne
[Mil17, Definition 5.5]. Let K be an open compact subgroup of G(Af ) of the form

∏
v<∞Kv,

where Kv ⊂ G(Qv) and Kv is hyperspecial for almost all the finite places v. This gives rise to
the Shimura variety ShK(G,X ) with reflex field E and whose complex points are

ShK(G,X )(C) = G(Q)\X ×G(Af )/K.

Assume that K is sufficiently small, so that ShK(G,X ) is a smooth. We fix a prime p over
which G is unramified and the level structure K has the form KpKp with Kp hyperspecial.
For each prime ideal p of E lying over p, Blasius and Rogawski have defined a polynomial
Hp ∈ H(G(Qp)//Kp,Q)[X], and they conjectured that:

Conjecture 1.1 Blasius–Rogawski. Let ` be a prime 6= p (i) The Shimura variety ShK(G,X )
has good reduction at p (in some sense); and (ii) we have

Hp(Frp) = 0 in the ring EndQ`(H
•
ét(ShK(G,X )×E Q,Q`)).

This conjecture was proved by Ihara (extending cases treated by Eichler and Shimura) for
Shimura curves. The first statement has been established for Shimura varieties of abelian type
by Kisin [Kis09, Kis10] and the second part was proved by: Bültel for certain orthogonal groups
[Bül97], Wedhorn [Wed00] in the PEL case for groups that are split over Qp, Bültel–Wedhorn for
the unitary case of signature (n− 1, 1) with n even [BW06], Koskivirta for a unitary similitude
group of signature (n − 1, 1) over Q when p is inert in the reflex field and n odd [Kos13] and
finally H. Li showed recently the conjecture for simple GSpin Shimura varieties [Li18].

In all these cases for which the conjecture is known, the authors prove a slightly stronger
version of it where the desired annihilation is taking place in a ”geometric” ring of correspon-
dences in characteristic p. Assume that ShK(G,X ) is of Hodge-type and let SK be its integral
model over OEp . This scheme has an interpretation as a moduli space of abelian schemes with
additional structures. Following Chai–Faltings [FC90], Moonen defines in [Moo04] a stack p−Isog
over OEp , parametrizing p-isogenies between two points of SK . It has two natural projections
to SK , sending an isogeny to its target and source. the subalgebra generated by the irreducible
components. Consider the Q-algebra of cycles Q[p − Isog × E] and Q[p − Isog × kOEp

] where
kOEp

is the residue field of OEp , here multiplication is defined by composition of isogenies. Define

p− Isogord × kOEp
as the preimage of the µ-ordinary locus of the special fiber of the SK , under
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the source projection. We get a diagram of Q-algebra homomorphism

H(G(Qp)//Kp,Q) Q[p− Isog× E]

Q[p− Isog× kOEp
]

H(M(Qp)//Kp ∩M(Qp),Q) Q[p− Isogord × kOEp
]

h

ṠGM

σ

ord

h̄

cl

where the big square is commutative, M is the centralizer of the norm of the dominant coweight
µ given by the Shimura datum, the homomorphism ṠGM is the twisted Satake transform, σ
is the specialization map of cycles, the map ord intersects a cycle with the ordinary µ-locus
while cl is the map sending a cycle to its closure. There is a natural Frobenius section of the
source projection, mapping an abelian variety to its Frobenius isogeny, which produces a closed
subscheme F of p− Isog× kOEp

.

Conjecture 1.2. The cycle F is a root of the polynomial

σ ◦ h(Hp)(X) ∈ Q[p− Isog× kOEp
][X].

Functorial properties of cohomology shows that Conjecture 1.2 implies Conjecture 1.1. Most
known cases of Conjecture 1.2 are obtained by proving first the conjecture on the generically
ordinary p-isogenies. This reduces to Bültel’s group theoretic result which says that we have an
annihilation

Hp(µ) = 0 in the Q-algebra H(M(Qp)//Kp ∩M(Qp),Q). (?)

Now, If the ordinary locus p− Isogord× kOEp
is dense in p− Isog× kOEp

, then Bültel’s argument
is sufficient to prove the full congruence conjecture. This is the cases studied by Chai-Faltings,
Bültel, Wedhorn and Bültel–Wedhorn.

We have a commutative diagram:

HK(Q) H(M(Qp) �Kp ∩M(Qp),Q)

EndZ[G]Q[G/K] EndQ[P ]Q[G/K] EndQ[M(Qp)]Q[M(Qp)/Kp ∩M(Qp)].

ṠGM

Our main results (Theorem 6.4) shows in particular that Bultel’s relation (?) lifts naturally to
an analogous relation

Hp(uµ) = 0 ∈ EndQ[P(Qp)]Q[G(Qp)/Kp] (†)
where uµ is the U-operator attached to $µ [Bou21d] and P is the largest parabolic subgroup of
G relative to which µ is dominant. For applications, a key advantage of the latter relations (upon
Bültel’s) is that while H(M(Qp)//Kp∩M(Qp),C) still had to be made acting on various spaces,
the non-commutative ring EndZ[P(Qp)](G(Qp)/Kp) already acts (faithfully and by definition) on
the ubiquitous space Q[G(Qp)/Kp].

In a work in progress the author is tackling (using † instead) a generalization of Conjecture
1.2 for abelian-type Shimura varieties [Bou21c].
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1.3 Main result

Let F be a finite extension of Qp for some prime p, OF its ring of integers, $ a fixed uniformizer
in OF and kF the residue field of F of size q. For every scheme X over SpecOF , we set Xκ(F ) :=
X ×SpecOF Specκ(F ) for the special fiber.

Let G/F be an unramified reductive group, S a maximal F -split subtorus of G and A the
apartment attached to S in the extended Bruhat–Tits building of G, together with a fixed origin
a hyperspecial point a◦ ∈ A. Let T be the centralizer of S, which is a maximal F -torus in G,
N = NG(S), B = T ·U+ a Borel subgroup with unipotent radical U+ and W = N(F )/T(F ) be
the Weyl group.

Let K be a hyperspecial maximal open compact subgroup of G attached a◦. Bruhat and Tits
attach to a◦ a reductive OF -model G of G. Let K be the corresponding parahoric subgroup, i.e.
G(OF ). This also applies to the reductive group T and a◦, we get then a reductive OF -model T
of T. Let I be the Iwahori subgroup that is defined by

I = {g ∈ G(OF ) : red(g) ∈ B(kF )}.

For any algebraic F -groups H (bold style), we denote its group of F -points by the ordinary
capital letter H = H(F ).

Let ν ′N : N → (X∗(S)⊗Z R) oW be the map characterized by

ν ′N ($λ) = λ.

Note that ν ′N = −νN , where νN is the Bruhat–Tits translation homomorphism. Set

T1 := T (OF ) = ker νN = kerκT,

where κT is the Kottwitz homomorphism1. We embed X∗(S) into T (using ν ′N ) by identifying
λ ∈ X∗(S) with $λ := λ($). Using this identification, we have

ΛT := T/T1 ' X∗(T)F ' X∗(S).

Set Φ+ for the set of B-positive roots, the one that appears in Lie(B), or equivalently if it takes
positive values on the vectorial chamber C− opposite to C+; where C+ is the vectorial chamber
corresponding to B2.

We say that λ ∈ X∗(S) is B-dominant if 〈λ, α〉 > 0 for all α ∈ Φ+. Let C ⊂ Aext denotes the
closed vectorial chamber corresponding to the Borel B in the extended apartment attached to S.
Thus, an element t = $λ for λ ∈ X∗(S) is antidominant if and only if λ ∈ X∗(S)∩C, if and only
if λ is B-dominant, since 〈ν ′N (t), α〉 = 〈λ, α〉 6 0,∀α ∈ Φ+. Write Λ−T for the set of antidominant
elements in ΛT .

For any extension E of F , let M(E) be the set of G(E)-conjugacy classes of (algebraic
group) cocharacters Gm,E → GE . By [Kot84a, Lemma 1.1.3], the canonical surjective morphism
X∗(S)→M(F ) yields the following identification

X∗(S)/W (G,S) 'M(F ) 'M(F )Gal(F/F ) '
(
X∗(T)/W (GF ,T)

)Gal(F/F )
.

In addition, using the Cartan decomposition one gets another identification identification

M(F ) ' K\G/K,

1Note that in this unramified case, T splits over the completion of Fun denoted previously by L. Thus, the
Kottwitz homomorphism takes the simpler form κT : T(L) → X∗(T).

2Given B, the chamber C+ is the unique vectorial chamber with apex a◦ for which T1U
+ is the union of the

fixators of all quartiers a+ C+ with a ∈ A.
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given by [λ] 7→ K$λK.

Let c ∈M(F ) and F (c) ⊂ F un its field of definition. Set d = [F (c) : F ]. Let µ ∈ NormF (c)/F c
be the cocharacter of T which is B-dominant, i.e. $µ is antidominant. Let P be the largest
parabolic subgroup of G relative to which µ is dominant, L is a Levi factor of P (which is also
the centralizer of µ in G) and U+

P the unipotent radical of P.

In [Bou21d], to any element t ∈ Λ−T is attached an operator ut ∈ EndZ[B]Z[G/K] charac-
terized by sending the trivial class K to

∑
u∈I/I∩tIt−1 utK (and extended B-equivariantly to

Z[G/K]).

The main result of the paper (which generalizes [BBJ18, Lemma 3.3]) is:

Theorem 1.3 Seed relation. The operator u$µ ∈ U is a right root of the Hecke polynomial HG,c

in EndZ[P ]Z[q±1][G/K].

Remark 1.4. The minimal polynomial of u$µ has actually its coefficients in the integral Hecke
algebra EndZ[G]Z[G/K].

Remark 1.5. This relation has another application; in [Bou21b] (resp. [BBJ18]) we construct a
tame (resp. vertical) norm compatible system of special cycles in a (product of) unitary Shimura
variety.

Remark 1.6. A very interesting and surprising aspect of this work is that in order to establish
formulas relating the two non-commuting commutative subrings, U and HK(G), of the Hecke
algebra EndZ[B](Z[q±1][G � K]) one has to embed them both in yet another noncommutative
ring (the Iwahori–Hecke algebra HI(Z[q−1])), where they actually do commute!

1.4 Acknowledgement

Some parts of this article originated from my doctoral thesis, directed by D. Jetchev, to whom I
am very grateful. I am thankful to C. Cornut for his support and meticulous reading and to T.
Wedhorn; the discerning reader will no doubt notice the importance of his paper [Wed00].

2. Langlands dual group

Let Γun = Gal(F un/F ) ' Gal(kF /kF ). As before, we let σ ∈ Γun be the arithmetic Frobenius of
F . The group G split over F un [GD70, XXVI 7.15]. We consider a Langlands dual group of G
with respect to Γun. This group sits in the following short exact sequence

1 Ĝ LG Γun 1,

and every choice of épinglage (B̂, T̂, (eα))3 yields a splitting of the above exact sequence. We fix
a Γun-invariant épinglage [Kot84b, §1] thus LG = Ĝ o Γun.

The Γun-equivariant isomorphism X∗(T) ' X∗(T̂) induces a canonical identification between
the Γun-groups W (GF ,T) and the Weyl group W (Ĝ, T̂) and an identification between the

X∗(S) = X∗(T)F and X∗(Ŝ). The inclusion S ↪→ T gives an embedding X∗(S) ↪→ X∗(T) ,which
yields a short exact sequence

1 T̂1−σ T̂ Ŝ 1 ,

3Here, for each simple root α of T̂, eα is a nonzero element of the root vector space Lie(Ĝ)α.
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showing that Ŝ ' T̂/(1− σ)T̂. Therefore,

T̂ = Spec(C[X∗(T̂)]) = Spec(C[X∗(T)]),

Ŝ = Spec(C[X∗(S)]) = Spec(C[ΛT ]) = Spec (Cc(T(F ) � T (OF ),C)) .

In particular, Ŝ(C) = Hom(X∗(T)F ,C
×). The above identification W (GF ,T) ' W (Ĝ, T̂), lets

W (G,S) operates on Ŝ by duality. The space Ŝ/W (G,S) has the structure of a smooth affine
C-scheme whose coordinate ring is C[X∗(S)]W (G,S):

Ŝ/W (G,S) = Spec
(
C[X∗(S)]W (G,S)

)
= Spec

(
C[ΛT ]W (G,S)

)
.

Using the twisted Satake isomorphism of (see fo example [Bou21a, Theorem 5.2.1]) we obtain

Ŝ/W (G,S) = Spec (HK(C)) . (1)

3. Unramified representations and unramified L-parameters

Let WF ⊂ Γun whose elements induce an integral power of the Frobenius automorphism σ : x 7→
xq on the algebraic closure of the residue field. The valuation val : WF → Z sends an element
ψ ∈ WF to the power of σ it induces, e.g val(σ) = 1. Define the ”Weyl form” of the Langlands
group to be L

wG := Ĝ o WF ⊂ LG. The isomorphism Z → WF given by 1 7→ σ defines a
semidirect product Ĝ oZ and we get a homomorphism

L
wG→ Ĝ oZ.

Definition 3.1. An unramified L-parameter is a homomorphism φ : WF → L
wG that verifies the

following properties:

(i) The composition WF
L
wG WF

φ
is the identity.

(ii) For any w ∈ WF , φ(w) is semisimple.

(iii) The composition WF
L
wG Ĝ oZφ

factors through val.

Set Φun(G) for the set of equivalence4 classes of unramified L-parameters.

The set of L-parameters is in bijection with the set of semisimple elements of the form
g o σ ∈ LG. Therefore, Φun(G) identifies with the set of semisimple elements of Ĝ modulo
σ-conjugation.

Definition 3.2. An unramified representation of G(F ) is a homomorphism of groups π : G(F )→
GL(V ) where V is a C-vector space verifying the following conditions:

(i) π is irreducible.
(ii) The stabilizer of any vector v ∈ V is an open subgroups of G(F ).
(iii) For any open subgroup O ⊂ G(F ), the vector subspace V O of O-fixed vectors is finite

dimensional.
(iv) The subspace V K is nonzero.

Set Πun(G) for the set of equivalence5 classes of unramified representations of G(F ).

4Two L-parameters are equivalent if they are Ĝ(C)-conjugate.
5Two representations (π1, V1) and (π2, V2) are equivalent if there exists an isomorphism V1 → V2 sending π1

to π2.
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Proposition 3.3. There is a natural bijection

Φun(G) ' Ŝ(C)/W (G,S) ' Πun(G).

Proof. In the proof of [BR94, Proposition 1.12.1], one shows first the above proposition for the
torus T:

Φun(T) ' Ŝ(C) ' Πun(T),

then deduce it for G using [Bor79, Proposition 6.7].

Combining Proposition 3.3 and (1) yields

Φun(G) ' Spec(HK(C)). (2)

Remark 3.4. The above proposition gives an alternative characterization of the untwisted Satake
homomorphism. Consider the following injective homormophism

HK(C)
{

Πun(G)→ C
}

hg = 1KgK (π 7→ Tr(π(hg)|V K )),

where, V is given a structure of a left HK(C)-module defined by f · v for f ∈ HK(C) and v ∈ V
by the formula

f · v =

∫
G
f(g)(π(g) · v)dµK(g).

By Proposition 3.3 we get the following commutative diagram

HK(C) Cc(ΛT ,C)

C[Πun(G)] C[Πun(T)]W (G,S) C[Πun(T)].

'

SGT

'

'

4. The Hecke polynomial

Let c ∈ M(F ) and µc ∈ X∗(T) be the unique BF -dominant cocharacter of TF . Both, c and µc
have the same field of definition, a finite unramified extension F (c) ⊂ F un of F . Set d = [F (c) : F ]
and let

NormF (c)/F c := [
∏

τ∈Gal(F (c)/F )

τ(µc)] ∈M(F )

be the norm of c6. We may assume that for some representative of the conjugacy classNormF (c)/F c
takes values in the torus T (and hence for all). The conjugacy class c ∈ M(F (c)) determines a
Weyl orbit of a character of T̂, in which there is a unique µ̂c ∈ X∗(T̂) that is dominant with
respect to the Borel subgroup B̂.

Let (rc, V ) be a representation of L(GF (c)) (unique up to isomorphism) satisfying the condi-
tions:

– The restriction of rc to Ĝ is irreducible with highest weight µ̂c.

6It is straightforward that the conjugacy class NormF (c)/F c does not depend on the choice of the representative
µc.
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– For any admissible invariant splitting of L(GF (c)) the subgroup Γdun of L(GF (c)) acts trivially
on the highest weight space of rc.

Fix an invariant admissible splitting L(GF (c)) = Ĝ o Γdun.

Definition 4.1 The Hecke polynomial. For every ĝ ∈ Ĝ, consider the following polynomial:

PG,c(X) = det
(
X − qd〈µc,ρ〉rc

(
(ĝ o σ)d

))
.

By varying ĝ, the coefficients of PG,c are viewed as elements of the algebra of regular functions of
Φun(G). Let HG,c ∈ HK(C)[X] be the Hecke polynomial corresponding to PG,c via (2) (compare
with [BR94, §6]).

5. Explicit twisted Satake transform

Let µ ∈ NormF (c)/F c be the cocharacter of T which is B-dominant, i.e. $µ is antidominant. Let
L be the centralizer of µ in G. Let P be the largest parabolic subgroup of G relative to which µ
is dominant, L is a Levi factor of P and U+

P the unipotent radical of P. By definition we have
T ⊂ L and U+

P ⊂ U+. Set K† = † ∩ K for any † ∈ {P,L, U+
P }. Set f[µ] = 1K$µK ∈ HK(Z),

g[µ] = 1$µKL ∈ Cc(L � KL,Z) and i$µ = 1I$µI ∈ HI(Z) . Let p : Gsc → G be the simply
connected covering of the derived group of G and let Ssc be the unique maximal F -split torus of
Gsc such that p(Ssc) ⊂ S. The map p defines a homomorphism from X∗(Ssc) to X∗(S). We are
interested in the set

ΣF (µ) = {ν ∈ X∗(S) : µ− ν ∈ Im(X∗(Ssc)) and wν � µ for all w ∈W (G,S)}.

Remark 5.1. The above W -invariant sets of weights plays a prominent role in representation
theory and they are called ”saturated sets of weights”. Moreover, we have (see [Kot84a, §2.3],
[Hum72, 13.4 Exercise] and Bourbaki’s [Bou68, Chapter VI, Exercises of §1 and §2]) that

ΣF (µ) =
⊔

λ∈X∗(S)∩C : λ�µ

Wλ

where � denotes7 the partial order on X∗(S) ∩ C defined by

λ � ν ⇔ ν − λ =
∑

nαα
∨, nα ∈ Z>0.

Moreover, when µ is minuscule then ΣF (µ) = W (G,S)µ [Bou21a, Remark 5.2.8].

We have the following explicit description of the twisted Satake homomorphism

Proposition 5.2. Write

ṠGT (f[µ]) =
∑

ν∈ΣF (µ)

c(ν).1$νT1 ∈ Cc(T � T1,Z),

and the coefficients {c(ν)} are positive powers of q and verifies

c(wν) = q〈δ,ν−w(ν)〉c(ν) for all w ∈W (G,S), with c(µ) = 1.

Proof. This is a particular case of [Bou21a, Theorem 5.2.1 & Theorem 5.3.1]. The twisted Satake

isomorphism ensures that ṠGT (f[µ]) ∈ Cc(T � T1,Z)Ẇ where Ẇ denotes the Weyl group with its

7Compare with [Bou21a, Definition 5.2.4]
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twisted dot-action (See [Bou21a, §3.16]). This shows that

c(ν)q〈δ,ν〉 = c(w(µ))q〈δ,w(ν)〉 for all w ∈W (G,S).

The coefficient c(µ) = 1 is obtained by [Kot84a, Lemma 2.3.7 (b)] using [Bou21a, Remark 5.2.9].

The fact that c(ν) > 0 if and only ν ∈ ΣF (µ) is well known in this unramified case; it follows
by [Kot84a, Lemma 2.3.7 (a)] for the ”only if” and [Rap00] for the ”if”.

6. Seed relations and U-operators

Using the fixed épinglage, we can consider a Γun -equivariant embedding LT = T̂ o Γun ↪→ LG.
The composition

L(TF (c))
L(GF (c)) GL(V ) C[X]

rc PG,c
,

is independent of all fixed choices. The restriction of rc to T̂ yields a weight space decomposition

V =
⊕

λ∈ΣE(µc)

V
λ̂
.

We have

SGT (PG,c) = det
(
X − qd〈µc,ρ〉rc|L(TF (c))

(
(t̂o σ)d

))
∈ C[Φun(T)]W (G,S).

Define the twisted restriction of rc to be the morphism of schemes

rT : L(TF (c)) = T̂ o Γdun GL(V )

given on C-points by

rT (1 o σd) = rc(1 o σd) and rT (t̂o 1) · vλ = q−〈ρ,λ〉λ(t̂) · vλ (3)

for vλ ∈ Vλ for all λ ∈ Σ(µc). The homomorphism rT is not a homomorphism of groups but maps
conjugacy classes to conjugacy classes and it is defined to ensure, using [Bou21a, Remark 5.2.9]
and (3), that

ṠGT (PG,c) = ηB ◦ SGT (PG,c)

= det
(
X − q−d〈µc,ρ〉rT

(
(t̂o σ)d

))
∈ C[Φun(T)].

Remark 6.1. Note that our choice of the twisted representation rT depends crucially on the
normalization of the isomorphism X∗(S) ' ΛT . We have adopted the following isomorphism
λ 7→ $λ. Using [Bou21a, Remark 5.2.9] and δB($λ)1/2 = q−〈λ,ρ〉, we see that

X∗(S)⊗Z C X∗(S)⊗Z C

ΛT ⊗Z C ΛT ⊗Z C.

λ 7→$λT1'

η : λ7→q−〈λ,ρ〉

'

η : tT1 7→δ(t)1/2tT1

As opposed to [Wed00, Proposition 2.7], we insist on the fact that we do not assume µ to be
minuscule in the following proposition.

Proposition 6.2. (i) Let SF (c) ⊂ T denotes the maximal split torus of GF (c) containing the

image of µc, let CF (c) ⊂ B(GF (c), F (c))ext be the closed vectorial chamber corresponding to
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the Borel BF (c). We have

deg(HG,c) >
∑

λ∈X∗(SF (c))∩CF (c) : λ�µc

#(W (G,SF (c))λ) = #ΣF (c)(µc)

(ii) The twisted restriction rT of rc to L(TF (c)) is isomorphic to a direct sum

V =
⊕

ΣF (c)(µc)

V
λ̂

where, Vw(µ̂) is one-dimensional with generator v
λ̂

for any w ∈W , such that

rT (t̂o σd) · vσd(r−1)w(µ̂) = q−〈ρ,w(µ)〉w(µ̂)(t̂) · vw(µ̂). (4)

Proof. We will just imitate the proof of [Wed00, (2) Proposition 2.7] but without requiring µ to
be minuscule.

(i) Fix a Borel pair (T̂, B̂) of Ĝ and let µ̂c be the dominant character of T̂ corresponding to
the conjugacy classe c. By definition of the Hecke polynomial, its degree is the dimension
of the representation rc which is irreducible with highest weight µ̂c as a representation of
Ĝ. By remark 5.1, the only weights of rc are the elements

⊔
λ̂
W (Ĝ, T̂)λ̂ where the disjoint

union is taken over dominant wights λ̂ � µ̂c (here � is the usual partial order on dominant
weights X∗(T̂)dom). By definition of the dual group, we then have⊔

λ̂∈X∗(T̂)dom : λ̂�µ̂c

W (Ĝ, T̂)λ̂ =
⊔

λ∈X∗(SF (c))∩CF (c) : λ�µc

W (GF (c),S
F (c))λ

= ΣF (c)(µc).

(ii) The twisted restriction rT of rc to L(TF (c)) is isomorphic to a direct sum

V =
⊔

λ̂∈X∗(T̂)dom : λ̂�µ̂c

V
λ̂

and the highest weight space Vµ̂c is one-dimensional8 with generator vµ̂c . Accordingly, V
λ̂

is

one-dimensional for any λ̂ ∈W (Ĝ, T̂)µ̂c. The conjugacy class c being defined over F (c), we
see that 〈σn〉 stabilizes W (Ĝ, T̂)µ̂c.
Choose for each classe Z ∈W (Ĝ, T̂)µ̂c/〈σd〉 a representative λ̂Z ∈ Z and a vector v

λ̂Z
∈ V

λ̂Z
.

Define

v
σrd(λ̂Z)

:= rc(1 o σrd) · v
λ̂Z
, for 1 6 r < rZ := min{s : σsdλ̂Z = λ̂Z}.

Therefore, taking r = −1 gives

rT (t̂o σd) · v
σd(r−1)(λ̂Z)

= rT (t̂o 1) · v
λ̂Z

(3)
= q−〈ρ,λ〉λ̂Z(t̂) · v

λ̂Z
.

Lemma 6.3. We have (ṠGT HG,c)(µ) = 0 in Cc(T � T1, R).

Proof. The conjugacy classe [µ] (resp. c) gave rise to a dominant character µ̂ (resp. µ̂c) of T̂ and

µ̂ = µ̂cσ(µ̂c) · · ·σd−1(µ̂c).

8The weight spaces in the weyl orbit of the highest weight are one dimensional, but outside this distinguished
weyl orbit, there are weight spaces which are not 1 dimensional.
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To prove the lemma, it suffices to show that

det
(
X − qd〈µc,ρ〉rT |Vµ̂c

(
(σ n t̂)d

))
∈ C[Φun(T)][X]

has µ̂(t̂) as a root for all t̂ ∈ T̂. Identify Φun(T) with the set of σ-conjugacy classes {t̂} of
elements t̂ ∈ T̂(C). For any v ∈ Vµ̂, we have

qd〈µc,ρ〉rT
(
(σ n t̂)d

)
· v = qd〈µc,ρ〉rT

(
σd n (t̂σ(t̂) · · ·σd−1(t̂))

)
· v

Prop. 6.2
= µ̂c

(
t̂σ(t̂) · · ·σd−1(t̂)

)
· v

= µ̂c(t̂)σ(µ̂c)(t̂) · · ·σd−1(µ̂c)(t̂) · v
= µ̂(t̂) · v.

We will show now the main theorem of the paper:

Theorem 6.4 Seed relation. The operator u$µ ∈ U is a right root of the Hecke polynomial HG,c

in the non-commutatif R-algebra EndP (Cc(G/K,R)).

Proof. Under the identifications ΛT ' X∗(T)F ' X∗(T̂)F the element $µT1 ∈ Λ−T corresponds
to the function t 7→ µ̂(t). Recall that by [Bou21d, Lemma 2.6.4] u$µ ∈ EndPCc(G �K,Z) and
the coefficients of HG,c are in HK(R) ' EndGCc(G �K,R) [Wed00, 2.8], thus

HG,c(u$µ) ∈ EndPCc(G �K,R).

Thanks to the compatibility of the Satake and Bernstein twisted isomorphisms [Bou21a, Theorem
6.5.1], we see that Θ̇Bern ◦ ṠGT (HG,c) ∈ Z(HI(R))[X]. Write HG,c =

∑r
k=1 hkX

k and h̄k =
Θ̇Bern ◦ ṠGT (hk) ∈ Z(HI(R)). So h̄k ∗I 1K = 1K ∗I h̄k = hK . We then have for any p ∈ P

1pK •HG,c(u$µ) =

r∑
k=1

(1pK • uk$µ) ∗K hk

=
r∑

k=1

(1pI ∗I ik$µ) ∗I 1K ∗K hk

=
r∑

k=1

(1pI ∗I ik$µ) ∗I (
1

[K : I]
1K ∗I 1K ∗I h̄k)

=
r∑

k=1

(1pI ∗I ik$µ) ∗I 1K ∗I h̄k

= 1pI ∗I

(
r∑

k=1

ik$µ ∗I h̄k

)
∗I 1K

= 1pI ∗I

(
r∑

k=1

h̄k ∗I ik$µ

)
∗I 1K

= 1pI ∗I
(

(Θ̇Bern ◦ ṠGT HG,c)(i
k
$µ)
)
∗I 1K

= 1pI ∗I Θ̇Bern

(
(ṠGT HG,c)($

µT1)
)
∗I 1K

Lemma 6.3
= 0.

We have shown HG,c(u$µ) =
∑r

k=1 hk ◦ uk$µ = 0 ∈ EndP (Cc(G/K,R)).

11
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Remark 6.5. If µc is minuscule, then ΣF (µc) = W (GF ,T)µc and accordingly the degree of the
Hecke polynomial is

deg(HG,c) =
∣∣W (GF ,T)µc

∣∣ .
In particular, deg(HG,c) > deg(Pµ) = |W/Wµ| = |W (G,S)µ|, where Pµ is the minimal polyno-
mial of u$µ in Z(HI(R)) (see proof of [Bou21d, Theorem 2.8.1]). Therefore, if G is a split group,
µc minuscule and E = F , then

HG,[µ] = Pµ ∗I 1K .

7. Bültel’s annihilation relation

In this last section we will show how Theorem 6.4 lifts (generalizes) a previously known result
due to Bültel [Bül97, 1.2.11].

Let ṠP : Cc(P/KP ,Q)→ Cc(L/KL,Q) be the canonical homomorphism given by

f 7→

(
m 7→

∫
U+
P

f(nm)dµU+
P

(n)

)
,

where dµU+
P

is the left-invariant Haar measure giving KU+
P

volume 1. Both Q-modules Cc(P/
KP ,Q) and Cc(L/KL,Q) are actually Q-algebras (by [Bou21a, Lemma 3.11.2]) and the transform
ṠP is an algebra homomorphism. Indeed, let f, g ∈ Cc(P/KP ,Q) then

ṠP (f ∗KP g)(p) =

∫
U+
P

(

∫
P
f(a)g(a−1up)dµP (a))dµU+

P
(u)

=

∫
U+
P

∫
L

∫
U+
P

f(nm)g(m−1n−1up)dµU+
P

(n)dµL(m)dµU+
P

(u)

=

∫
U+
P

(∫
L
f(nm)dµU+

P
(n)

)(∫
U+
P

g(m−1pu)dµU+
P

(u)

)
dµL(m)

= ṠP (f) ∗KP ṠP (g)(p)

where, dµP denotes the left invariant Haar measure giving KP measure 1.

We also consider the map |P sending any function on G to its restriction to P . Using the
Iwasawa decomposition G = PK ([Bou21a, Proposition 2.2.1]) one shows that this is actually
an algebra homomorphism

|P : HK(R) Cc(P �KP , R),

and a |P -linear module homomorphism

|P : Cc(G/K,R) Cc(P/KP , R).

Lemma 7.1. Let p ∈ P and m ∈ L, then:

1pK |P = 1pKP and ṠPL (1mKP ) = |mKU+
P
m−1|U+

P
1mKL .

Proof. The first equality is a direct consequence of the Iwasawa decomposition. For the second
it is deduced from the fact that KP = KL.KU+

P
given in [Bou21a, Proposition 2.2.1]:

ṠPL (1mKP )(a) =

∫
U+
P

1mKP (ua)dµU+
P

(u).

12
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The integrand is nonzero if and only if ua ∈ mKP = mKL ·KU+
P

, but since L ∩ U+
P = {1}, we

have

u ∈ aKU+
P
a−1 and a ∈ mKL,

which is equivalent to u ∈ mKU+
P
m−1 and w ∈ mKL. Therefore,

ṠPL (1mKP ) = |mKU+
P
m−1|U+

P
1mKL .

Observe that if mKU+
P
m−1 ⊂ KU+

P
then

|mKU+
P
m−1|U+

P
=

1

[KU+
P

: mKU+
P
m−1]

=
1

[KP : mKPm−1]
.

Lemma 7.2. We have a following commutative diagram of R-algebras

HK(R) Cc(L �KL, R)

R[ΛT ]Ẇ R[ΛT ]ẆL

ṠGT '

ṠGL

ṠLT'

where, WL denotes the relative Weyl group of L (which is equal to the subgroup Wµ of elements
in W fixing µ). The lowest horizontal arrow is the inclusion of W -invariants into WL-invariants.

Proof. By definition of the parabolic P , multiplication in G gives a bijection

(U+ ∩ L) · U+
P
∼−→ U+. (5)

For any m ∈ L and h ∈ HK(R)

ṠGT (h)(m) =

∫
U+

h(um)dµU+(u) [Bou21a, Lemma 5.1.2]

=

∫
U+
P

∫
U+∩L

h(u1u2m)dµU+
P

(u1) dµU+∩L(u2) by (5)

=

∫
U+∩L

(∫
U+
P

h(u1u2m)dµU+
P

(u1)

)
dµU+∩L(u2)

=

∫
U+∩L

ṠGL (h)(u2m)dµU+∩L(u2)

= ṠLT ◦ ṠGL (h)(m).

Therefore, ṠGT = ṠLT ◦ ṠGL which confirms the claimed commutativity of the above diagram.
Finally, the vertical maps are isomorphisms by [Bou21a, Theorem 5.2.1].

Let us reformulate the above twisted Satake homomorphism ṠGL as a homomorphism of
endomorphism rings. We have a commutative diagram:

HK(R) Cc(P �KP , R) Cc(L �KL, R)

EndGCc(G/K,R) EndPCc(G/K,R) EndLCc(L/KL, R) EndLCc(L/KL, R).

|P ṠP

(1) (2) (3)

'

Let us first say few words about the homomorphisms (1) and (2):

13
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– We have used the Iwasawa decomposition G = PK to identify G/K ' P/KP for the middle
vertical arrow, accordinly the homomorphism |P induces the canonical injection (1):

EndGCc(G/K,R) EndPCc(G/K,R).

– We have a homomorphism of rings

EndPCc(G/K,R) EndPCc(U+
P \G/K,R)

f (U+
P gK 7→ Π(f(gK)))

where Π is the natural obvious map R[G/K] → R[U+
P \G/K]. But since P = LU+

P , we
actually have EndPCc(U+

P \G/K,R) = EndLCc(U+
P \G/K,R).

Using the Iwasawa decomposition again G = U+
P LK, we get a bijection

U+
P \G/K ' L/KL.

Thus, the homomorphism (2) is the composition

EndPCc(G/K,R) EndLCc(U+
P \G/K,R) EndLCc(L/KL, R).'

– The homomorphism (3) is the twist by the modulus function δ.

Lemma 7.3. The operator u$µ lives in EndPCc(G/K,R) and its image by the composition
(3) ◦ (2) is precisely g[µ].

Proof. Let us first compute the image of the operator u$µ by the map (2). We have for all a ∈ L
(see [Bou21d, Lemma 2.6.4])

u$µ(1U+
P aK

) =
∑

p′∈[U+
P ∩I+/U

+
P ∩$µI+$−µ]

1U+
P ap

′$µK

= #(U+
P ∩ I

+/U+
P ∩$

µI+$−µ)1U+
P a$

µK

= #(I+/$µI+$−µ)1U+
P a$

µK [Bou21d, Lemma 2.3.2]

Hence, the image of u$µ ∈ EndPCc(G/K,R) by (2) is

#(I+/$µI+$−µ)g[µ] = δB($−µ)g[µ] = q2〈µ,ρ〉g[µ].

Finally, (3) shows that the image of u$µ by the composition (3)◦ (2) is g[µ] ∈ EndLCc(L/KL, R).

Bultel’s annihilation result we have mentioned earlier is:

Corollary 7.4 Bultel’s annihilation. We have

ṠGL (HG,c(g[µ])) = 0 ∈ Cc(L �KL, R).

Bultel’s result as stated in [Wed00, §2.9] requires the conjugacy class c to be minuscule.
We will derive this corollary from Theorem 6.4, showing that the assumption ”minuscule” is
superfluous.

Proof. By definition of the ”excursion” pairing [Bou21d, §2.6] and the proof of Lemma 7.3, we

14
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see that for all p ∈ P :

0
Theorem 6.4

= (HG,c(u$µ) • 1pK) |P
= 1pKP ∗KP 1KP$µKP ∗KP (HG,c)|P .

This shows that

(HG,c)|P (1KP$µKP ) = 0,

and consequently we conclude

ṠLG(HG,c)(g[µ]) = ṠP ((HG,c)|P (1KP$µKP )) = 0.

References

BBJ18 R Boumasmoud, E Brooks, and D Jetchev, Vertical Distribution Relations for Special Cycles
on Unitary Shimura Varieties, International Mathematics Research Notices 2020 (2018), 3902–
3926.

Bor79 A Borel, Automorphic L-functions, Automorphic forms and Automorphic representations Part
II (Providence, RI), Proceedings of Symposia in Pure Mathematics, vol. 33, Amer. Math. Soc.,
1979, pp. 27–61.

Bou68 N Bourbaki, Groupes et Algèbres de Lie, vol. IV, V and VI, Hermann, Paris, 1968.

Bou21a R Boumasmoud, A tale of parahoric–Hecke algebras, Bernstein and Satake homomorphisms,
arXiv e-prints (2021), 1–58.

Bou21b , General Horizontal Norm Compatible Systems, arXiv e-prints (2021), 1–53.

Bou21c , Generalized Eichler–Shimura relations and Blasius–Rogawski conjecture, in preparation
(2021).

Bou21d , The ring of U-operators: Definitions and Integrality, arXiv e-prints (2021), 1–18.

BR94 D Blasius and J D Rogawski, Zeta functions of Shimura varieties, Motives (Providence, RI),
vol. 55, Proceedings of Symposia in Pure Mathematics, no. II, Amer. Math. Soc., 1994, pp. 525–
571.
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