Seed Relations

for
 Eichler-Shimura congruences and Euler systems

Reda Boumasmoud

Abstract

This paper proves that the \mathbb{U}-operator [Bou21d] attached to a cocharacter is a right root of the corresponding Hecke polynomial. This result is an important ingredient in the proof of (i) the horizontal norm relations in the context of Gross-Gan-Prasad cycles and of (ii) the generalization of Eichler-Shimura relations.

1. Introduction

1.1 Origin of the problem

Let F be any p-adic field, q the size of its residue field and ϖ a fixed uniformizer in the ring of integers \mathcal{O}_{F}. Let \mathcal{T} be the Bruhat-Tits building of $G L_{2}$ over F. This is a connected tree in which every node has $q+1$ neighbours. Let $o \in \mathcal{T}$ be a hyperspecial point fixed, K the maximal parahoric subgroup attached to \circ and $\mathcal{T}^{\circ}:=\left\{v \in G L_{2}(F) \cdot \circ \backslash \circ\right\}$.

The Hecke algebra $\mathcal{H}\left(G L_{2}(F) / / K, \mathbb{Z}\right)$ acts on \mathcal{T}° via adjacency operators, in particular the basic element $T_{p}:=\mathbf{1}_{K \operatorname{diag}(\varpi, 1) K}$, sends a vertex to the formal sum of its neighbours.

Define the operator $u_{\circ} \in \operatorname{End}_{\mathbb{Z}[K]} \mathbb{Z}\left[\mathcal{T}^{\circ}\right]$ which sends a vertex $v \neq \circ$ to its successors with respect to the origin \circ, in other words

$$
u_{\circ}(v)=\sum_{\operatorname{dist}\left(v^{\prime}, \mathrm{o}\right)=\operatorname{dist}(v, \mathrm{o})+1} v^{\prime} .
$$

Define also the predecessor operator $v_{\circ} \in \operatorname{End}_{\mathbb{Z}[K]} \mathbb{Z}\left[\mathcal{T}^{\circ}\right]$ sending a vertex $v \neq 0$ to the unique $v^{\prime} \in[\circ, v]$ verifying $\operatorname{dist}\left(v^{\prime}, \circ\right)=\operatorname{dist}(v, \circ)-1$. The operators u_{\circ} verify the following properties

$$
v_{\circ} \circ u_{\circ}=p \operatorname{Id}_{\mathcal{T}} \circ \neq u_{\circ} \circ v_{\circ} \text { and } T_{p}=u_{\circ}+v_{\circ} .
$$

We insist on the fact that the operators T_{p}, v_{\circ} and u_{\circ} do not commute. An immediate consequence of these basic properties is that $u_{\mathfrak{p}}$ (resp. $v_{\mathfrak{p}}$) is a right (resp. left) root of the Hecke polynomial $H_{p}(X)=X^{2}-T_{p} X+p$, i.e.

$$
u_{\circ}^{2}-T_{p} \circ u_{\circ}+p=0 \text { and } v_{\circ}^{2}-v_{\circ} \circ T_{p}+p=0 .
$$

The goal of this paper is to genralize such integrality relation to general unramified groups.

[^0]
Reda Boumasmoud

1.2 Motivation

In 1954, Eichler discovered the first instance of the link between zeta functions of Shimura varieties and automorphic L-functions. Shortly thereafter, Shimura extended Eichler results to compute the zeta functions of quaternionic curves. Their work was based on the congruence relation, known now as the Eichler-Shimura relation, which played an important role in the theory of arithmetic of elliptic curves and modular forms. Later on, in the 70s, Langlands launched a program that aims to generalize the previous work to compute zeta functions attached to all Shimura varieties. Gradually a conjecture generalizing the Eichler-Shimura relation has emerged and was formulated by Blasisus and Rogawski [BR94, §6]. We give its statement below after setting some background.

Let \mathbf{G} be a connected, reductive group defined over \mathbb{Q} and let $\mathbb{S}=\operatorname{Res}_{\mathbb{C} / \mathbb{R}} \mathbb{G}_{m, \mathbb{C}}$. Suppose we have a homomorphism of algebraic \mathbb{R}-groups $\mathbb{S} \rightarrow \mathbf{G}_{\mathbb{R}}$, which satisfies the axioms of Deligne [Mil17, Definition 5.5]. Let K be an open compact subgroup of $\mathbf{G}\left(\mathbb{A}_{f}\right)$ of the form $\prod_{v<\infty} K_{v}$, where $K_{v} \subset \mathbf{G}\left(\mathrm{Q}_{v}\right)$ and K_{v} is hyperspecial for almost all the finite places v. This gives rise to the Shimura variety $S h_{K}(\mathbf{G}, \mathcal{X})$ with reflex field E and whose complex points are

$$
S h_{K}(\mathbf{G}, \mathcal{X})(\mathbb{C})=\mathbf{G}(\mathbb{Q}) \backslash \mathcal{X} \times \mathbf{G}\left(\mathbb{A}_{f}\right) / K
$$

Assume that K is sufficiently small, so that $S h_{K}(\mathbf{G}, \mathcal{X})$ is a smooth. We fix a prime p over which \mathbf{G} is unramified and the level structure K has the form $K^{p} K_{p}$ with K_{p} hyperspecial. For each prime ideal \mathfrak{p} of E lying over p, Blasius and Rogawski have defined a polynomial $H_{\mathfrak{p}} \in \mathcal{H}\left(\mathbf{G}\left(\mathbb{Q}_{p}\right) / / K_{p}, \mathbb{Q}\right)[X]$, and they conjectured that:

Conjecture 1.1 Blasius-Rogawski. Let ℓ be a prime $\neq p$ (i) The Shimura variety $S h_{K}(\mathbf{G}, \mathcal{X})$ has good reduction at \mathfrak{p} (in some sense); and (ii) we have

$$
H_{\mathfrak{p}}\left(F r_{\mathfrak{p}}\right)=0 \text { in the ring } E n d_{\mathbb{Q}_{\ell}}\left(H_{\mathrm{et}}^{\bullet}\left(S h_{K}(\mathbf{G}, \mathcal{X}) \times_{E} \overline{\mathbb{Q}}, \mathbb{Q}_{\ell}\right)\right) .
$$

This conjecture was proved by Ihara (extending cases treated by Eichler and Shimura) for Shimura curves. The first statement has been established for Shimura varieties of abelian type by Kisin [Kis09, Kis10] and the second part was proved by: Bültel for certain orthogonal groups [Bü197], Wedhorn [Wed00] in the PEL case for groups that are split over \mathbb{Q}_{p}, Bültel-Wedhorn for the unitary case of signature $(n-1,1)$ with n even [BW06], Koskivirta for a unitary similitude group of signature $(n-1,1)$ over \mathbb{Q} when p is inert in the reflex field and n odd $[\operatorname{Kos} 13]$ and finally H. Li showed recently the conjecture for simple GSpin Shimura varieties [Li18].

In all these cases for which the conjecture is known, the authors prove a slightly stronger version of it where the desired annihilation is taking place in a "geometric" ring of correspondences in characteristic p. Assume that $S h_{K}(\mathbf{G}, \mathcal{X})$ is of Hodge-type and let δ_{K} be its integral model over $\mathcal{O}_{E_{\mathfrak{p}}}$. This scheme has an interpretation as a moduli space of abelian schemes with additional structures. Following Chai-Faltings [FC90], Moonen defines in [Moo04] a stack p - Isog over $\mathcal{O}_{E_{\mathfrak{p}}}$, parametrizing p-isogenies between two points of δ_{K}. It has two natural projections to δ_{K}, sending an isogeny to its target and source. the subalgebra generated by the irreducible components. Consider the \mathbb{Q}-algebra of cycles $\mathbb{Q}[p-\operatorname{Isog} \times E]$ and $\mathbb{Q}\left[p-\operatorname{Isog} \times k_{\mathcal{O}_{E_{\mathfrak{p}}}}\right]$ where $k_{\mathcal{O}_{E_{\mathfrak{p}}}}$ is the residue field of $\mathcal{O}_{E_{\mathrm{p}}}$, here multiplication is defined by composition of isogenies. Define p - Isog ${ }^{\text {ord }} \times k_{\mathcal{O}_{E_{\mathfrak{p}}}}$ as the preimage of the μ-ordinary locus of the special fiber of the δ_{K}, under

Seed Relations for Eichler-Shimura congruences and Euler systems

the source projection. We get a diagram of \mathbb{Q}-algebra homomorphism

where the big square is commutative, \mathbf{M} is the centralizer of the norm of the dominant coweight μ given by the Shimura datum, the homomorphism $\dot{\mathcal{S}}_{M}^{G}$ is the twisted Satake transform, σ is the specialization map of cycles, the map ord intersects a cycle with the ordinary μ-locus while cl is the map sending a cycle to its closure. There is a natural Frobenius section of the source projection, mapping an abelian variety to its Frobenius isogeny, which produces a closed subscheme F of $p-\operatorname{Isog} \times k_{\mathcal{O}_{E_{\mathfrak{p}}}}$.
Conjecture 1.2. The cycle F is a root of the polynomial

$$
\sigma \circ h\left(H_{\mathfrak{p}}\right)(X) \in \mathbb{Q}\left[p-\operatorname{Isog} \times k_{\mathcal{O}_{E_{\mathfrak{p}}}}\right][X] .
$$

Functorial properties of cohomology shows that Conjecture 1.2 implies Conjecture 1.1. Most known cases of Conjecture 1.2 are obtained by proving first the conjecture on the generically ordinary p-isogenies. This reduces to Bültel's group theoretic result which says that we have an annihilation

$$
H_{\mathfrak{p}}(\mu)=0 \text { in the } \mathbb{Q} \text {-algebra } \mathcal{H}\left(\mathbf{M}\left(\mathbb{Q}_{p}\right) / / K_{p} \cap \mathbf{M}\left(\mathbb{Q}_{p}\right), \mathbb{Q}\right) .
$$

Now, If the ordinary locus $p-\operatorname{Isog}{ }^{\text {ord }} \times k_{\mathcal{O}_{E_{\mathfrak{p}}}}$ is dense in $p-\operatorname{Isog} \times k_{\mathcal{O}_{E_{\mathfrak{p}}}}$, then Bültel's argument is sufficient to prove the full congruence conjecture. This is the cases studied by Chai-Faltings, Bültel, Wedhorn and Bültel-Wedhorn.

We have a commutative diagram:

Our main results (Theorem 6.4) shows in particular that Bultel's relation (\star) lifts naturally to an analogous relation

$$
H_{\mathfrak{p}}\left(u_{\mu}\right)=0 \in \operatorname{End}_{\mathbb{Q}\left[\mathbf{P}\left(\mathbb{Q}_{p}\right)\right]} \mathbb{Q}\left[\mathbf{G}\left(\mathbb{Q}_{p}\right) / K_{p}\right]
$$

where u_{μ} is the \mathbb{U}-operator attached to ϖ^{μ} [Bou21d] and \mathbf{P} is the largest parabolic subgroup of \mathbf{G} relative to which μ is dominant. For applications, a key advantage of the latter relations (upon Bültel's) is that while $\mathcal{H}\left(\mathbf{M}\left(\mathbb{Q}_{p}\right) / / K_{p} \cap \mathbf{M}\left(\mathbb{Q}_{p}\right), \mathbb{C}\right)$ still had to be made acting on various spaces, the non-commutative ring $E n d_{\mathbb{Z}\left[\mathbf{P}\left(\mathbb{Q}_{p}\right)\right]}\left(\mathbf{G}\left(\mathbb{Q}_{p}\right) / K_{p}\right)$ already acts (faithfully and by definition) on the ubiquitous space $\mathbb{Q}\left[\mathbf{G}\left(\mathbb{Q}_{p}\right) / K_{p}\right]$.

In a work in progress the author is tackling (using \dagger instead) a generalization of Conjecture 1.2 for abelian-type Shimura varieties [Bou21c].

Reda Boumasmoud

1.3 Main result

Let F be a finite extension of \mathbb{Q}_{p} for some prime p, \mathcal{O}_{F} its ring of integers, ϖ a fixed uniformizer in \mathcal{O}_{F} and k_{F} the residue field of F of size q. For every scheme X over $\operatorname{Spec} \mathcal{O}_{F}$, we set $X_{\kappa(F)}:=$ $X \times_{\text {Spec } \mathcal{O}_{F}} \operatorname{Spec} \kappa(F)$ for the special fiber.

Let \mathbf{G} / F be an unramified reductive group, \mathbf{S} a maximal F-split subtorus of \mathbf{G} and \mathcal{A} the apartment attached to \mathbf{S} in the extended Bruhat-Tits building of \mathbf{G}, together with a fixed origin a hyperspecial point $a_{\circ} \in \mathcal{A}$. Let \mathbf{T} be the centralizer of \mathbf{S}, which is a maximal F-torus in \mathbf{G}, $\mathbf{N}=N_{\mathbf{G}}(\mathbf{S}), \mathbf{B}=\mathbf{T} \cdot \mathbf{U}^{+}$a Borel subgroup with unipotent radical \mathbf{U}^{+}and $W=\mathbf{N}(F) / \mathbf{T}(F)$ be the Weyl group.

Let K be a hyperspecial maximal open compact subgroup of \mathbf{G} attached a_{\circ}. Bruhat and Tits attach to a_{\circ} a reductive \mathcal{O}_{F}-model \mathcal{G} of \mathbf{G}. Let K be the corresponding parahoric subgroup, i.e. $\mathcal{G}\left(\mathcal{O}_{F}\right)$. This also applies to the reductive group \mathbf{T} and a_{\circ}, we get then a reductive \mathcal{O}_{F}-model \mathcal{T} of \mathbf{T}. Let I be the Iwahori subgroup that is defined by

$$
I=\left\{g \in \mathbf{G}\left(\mathcal{O}_{F}\right): \operatorname{red}(g) \in \mathbf{B}\left(k_{F}\right)\right\} .
$$

For any algebraic F-groups \mathbf{H} (bold style), we denote its group of F-points by the ordinary capital letter $H=\mathbf{H}(F)$.

Let $\nu_{N}^{\prime}: N \rightarrow\left(X_{*}(\mathbf{S}) \otimes_{\mathbb{Z}} \mathbb{R}\right) \rtimes W$ be the map characterized by

$$
\nu_{N}^{\prime}\left(\varpi^{\lambda}\right)=\lambda .
$$

Note that $\nu_{N}^{\prime}=-\nu_{N}$, where ν_{N} is the Bruhat-Tits translation homomorphism. Set

$$
T_{1}:=\mathcal{T}\left(\mathcal{O}_{F}\right)=\operatorname{ker} \nu_{N}=\operatorname{ker} \kappa_{\mathbf{T}}
$$

where $\kappa_{\mathbf{T}}$ is the Kottwitz homomorphism ${ }^{1}$. We embed $X_{*}(\mathbf{S})$ into T (using ν_{N}^{\prime}) by identifying $\lambda \in X_{*}(\mathbf{S})$ with $\varpi^{\lambda}:=\lambda(\varpi)$. Using this identification, we have

$$
\Lambda_{T}:=T / T_{1} \simeq X_{*}(\mathbf{T})_{F} \simeq X_{*}(\mathbf{S}) .
$$

Set Φ^{+}for the set of B-positive roots, the one that appears in $\operatorname{Lie}(B)$, or equivalently if it takes positive values on the vectorial chamber \mathcal{C}^{-}opposite to \mathcal{C}^{+}; where \mathcal{C}^{+}is the vectorial chamber corresponding to B^{2}.

We say that $\lambda \in X_{*}(\mathbf{S})$ is \mathbf{B}-dominant if $\langle\lambda, \alpha\rangle \geqslant 0$ for all $\alpha \in \Phi^{+}$. Let $\overline{\mathcal{C}} \subset \mathcal{A}_{\text {ext }}$ denotes the closed vectorial chamber corresponding to the Borel B in the extended apartment attached to \mathbf{S}. Thus, an element $t=\varpi^{\lambda}$ for $\lambda \in X_{*}(\mathbf{S})$ is antidominant if and only if $\lambda \in X_{*}(\mathbf{S}) \cap \overline{\mathcal{C}}$, if and only if λ is \mathbf{B}-dominant, since $\left\langle\nu_{N}^{\prime}(t), \alpha\right\rangle=\langle\lambda, \alpha\rangle \leqslant 0, \forall \alpha \in \Phi^{+}$. Write Λ_{T}^{-}for the set of antidominant elements in Λ_{T}.

For any extension E of F, let $\mathcal{M}(E)$ be the set of $\mathbf{G}(E)$-conjugacy classes of (algebraic group) cocharacters $\mathbb{G}_{m, E} \rightarrow \mathbf{G}_{E}$. By [Kot84a, Lemma 1.1.3], the canonical surjective morphism $X_{*}(\mathbf{S}) \rightarrow \mathcal{M}(F)$ yields the following identification

$$
X_{*}(\mathbf{S}) / W(\mathbf{G}, \mathbf{S}) \simeq \mathcal{M}(F) \simeq \mathcal{M}(\bar{F})^{\operatorname{Gal}(\bar{F} / F)} \simeq\left(X_{*}(\mathbf{T}) / W\left(\mathbf{G}_{\bar{F}}, \mathbf{T}\right)\right)^{\operatorname{Gal}(\bar{F} / F)}
$$

In addition, using the Cartan decomposition one gets another identification identification

$$
\mathcal{M}(F) \simeq K \backslash G / K
$$

[^1]given by $[\lambda] \mapsto K \varpi^{\lambda} K$.
Let $\mathfrak{c} \in \mathcal{M}(\bar{F})$ and $F(\mathfrak{c}) \subset F^{u n}$ its field of definition. Set $d=[F(\mathfrak{c}): F]$. Let $\mu \in \operatorname{Norm}_{F(\mathfrak{c}) / F} \mathfrak{c}$ be the cocharacter of \mathbf{T} which is \mathbf{B}-dominant, i.e. ϖ^{μ} is antidominant. Let \mathbf{P} be the largest parabolic subgroup of \mathbf{G} relative to which μ is dominant, \mathbf{L} is a Levi factor of \mathbf{P} (which is also the centralizer of μ in \mathbf{G}) and \mathbf{U}_{P}^{+}the unipotent radical of \mathbf{P}.

In [Bou21d], to any element $t \in \Lambda_{T}^{-}$is attached an operator $u_{t} \in \operatorname{End}_{\mathbb{Z}[B]} \mathbb{Z}[G / K]$ characterized by sending the trivial class K to $\sum_{u \in I / I \cap t I t^{-1}} u t K$ (and extended B-equivariantly to $\mathbb{Z}[G / K])$.

The main result of the paper (which generalizes [BBJ18, Lemma 3.3]) is:
Theorem 1.3 Seed relation. The operator $u_{\varpi^{\mu}} \in \mathbb{U}$ is a right root of the Hecke polynomial $H_{\mathbf{G}, \mathrm{c}}$ in $E n d_{\mathbb{Z}[P]} \mathbb{Z}\left[q^{ \pm 1}\right][G / K]$.

REmARK 1.4. The minimal polynomial of $u_{\varpi^{\mu}}$ has actually its coefficients in the integral Hecke algebra $E n d_{\mathbb{Z}[G]} \mathbb{Z}[G / K]$.

Remark 1.5. This relation has another application; in [Bou21b] (resp. [BBJ18]) we construct a tame (resp. vertical) norm compatible system of special cycles in a (product of) unitary Shimura variety.

Remark 1.6. A very interesting and surprising aspect of this work is that in order to establish formulas relating the two non-commuting commutative subrings, \mathbb{U} and $\mathcal{H}_{K}(G)$, of the Hecke algebra $E n d_{\mathbb{Z}[B]}\left(\mathbb{Z}\left[q^{ \pm 1}\right][G / / K]\right)$ one has to embed them both in yet another noncommutative ring (the Iwahori-Hecke algebra $\mathcal{H}_{I}\left(\mathbb{Z}\left[q^{-1}\right]\right)$), where they actually do commute!

1.4 Acknowledgement

Some parts of this article originated from my doctoral thesis, directed by D. Jetchev, to whom I am very grateful. I am thankful to C. Cornut for his support and meticulous reading and to T. Wedhorn; the discerning reader will no doubt notice the importance of his paper [Wed00].

2. Langlands dual group

Let $\Gamma_{u n}=\operatorname{Gal}\left(F^{u n} / F\right) \simeq \operatorname{Gal}\left(\bar{k}_{F} / k_{F}\right)$. As before, we let $\sigma \in \Gamma_{u n}$ be the arithmetic Frobenius of F. The group \mathbf{G} split over $F^{u n}$ [GD70, XXVI 7.15]. We consider a Langlands dual group of G with respect to $\Gamma_{u n}$. This group sits in the following short exact sequence

$$
1 \longrightarrow \widehat{\mathbf{G}} \longrightarrow{ }^{L} \mathbf{G} \longrightarrow \Gamma_{u n} \longrightarrow 1
$$

and every choice of épinglage $\left(\widehat{\mathbf{B}}, \widehat{\mathbf{T}},\left(e_{\alpha}\right)\right)^{3}$ yields a splitting of the above exact sequence. We fix a $\Gamma_{u n}$-invariant épinglage [Kot84b, §1] thus ${ }^{L} \mathbf{G}=\widehat{\mathbf{G}} \rtimes \Gamma_{u n}$.

The $\Gamma_{u n}$-equivariant isomorphism $X_{*}(\mathbf{T}) \simeq X^{*}(\widehat{\mathbf{T}})$ induces a canonical identification between the $\Gamma_{u n}$-groups $W\left(\mathbf{G}_{\bar{F}}, \mathbf{T}\right)$ and the Weyl group $W(\widehat{\mathbf{G}}, \widehat{\mathbf{T}})$ and an identification between the $X_{*}(\mathbf{S})=X_{*}(\mathbf{T})_{F}$ and $X^{*}(\widehat{\mathbf{S}})$. The inclusion $\mathbf{S} \hookrightarrow \mathbf{T}$ gives an embedding $X_{*}(\mathbf{S}) \hookrightarrow X_{*}(\mathbf{T})$, which yields a short exact sequence

$$
1 \longrightarrow \widehat{\mathbf{T}}^{1-\sigma} \longrightarrow \widehat{\mathbf{T}} \longrightarrow \widehat{\mathbf{S}} \longrightarrow 1,
$$

[^2]
Reda Boumasmoud

showing that $\widehat{\mathbf{S}} \simeq \widehat{\mathbf{T}} /(1-\sigma) \widehat{\mathbf{T}}$. Therefore,

$$
\begin{gathered}
\widehat{\mathbf{T}}=\operatorname{Spec}\left(\mathbb{C}\left[X^{*}(\widehat{\mathbf{T}})\right]\right)=\operatorname{Spec}\left(\mathbb{C}\left[X_{*}(\mathbf{T})\right]\right), \\
\widehat{\mathbf{S}}=\operatorname{Spec}\left(\mathbb{C}\left[X_{*}(\mathbf{S})\right]\right)=\operatorname{Spec}\left(\mathbb{C}\left[\Lambda_{T}\right]\right)=\operatorname{Spec}\left(\mathcal{C}_{c}\left(\mathbf{T}(F) / / \mathcal{T}\left(\mathcal{O}_{F}\right), \mathbb{C}\right)\right) .
\end{gathered}
$$

In particular, $\widehat{\mathbf{S}}(\mathbb{C})=\operatorname{Hom}\left(X_{*}(\mathbf{T})_{F}, \mathbb{C}^{\times}\right)$. The above identification $W\left(\mathbf{G}_{\bar{F}}, \mathbf{T}\right) \simeq W(\widehat{\mathbf{G}}, \widehat{\mathbf{T}})$, lets $W(\mathbf{G}, \mathbf{S})$ operates on $\widehat{\mathbf{S}}$ by duality. The space $\widehat{\mathbf{S}} / W(\mathbf{G}, \mathbf{S})$ has the structure of a smooth affine \mathbb{C}-scheme whose coordinate ring is $\mathbb{C}\left[X_{*}(\mathbf{S})\right]^{W(\mathbf{G}, \mathbf{S})}$:

$$
\widehat{\mathbf{S}} / W(\mathbf{G}, \mathbf{S})=\operatorname{Spec}\left(\mathbb{C}\left[X_{*}(\mathbf{S})\right]^{W(\mathbf{G}, \mathbf{S})}\right)=\operatorname{Spec}\left(\mathbb{C}\left[\Lambda_{T}\right]^{W(\mathbf{G}, \mathbf{S})}\right) .
$$

Using the twisted Satake isomorphism of (see fo example [Bou21a, Theorem 5.2.1]) we obtain

$$
\begin{equation*}
\widehat{\mathbf{S}} / W(\mathbf{G}, \mathbf{S})=\operatorname{Spec}\left(\mathcal{H}_{K}(\mathbb{C})\right) . \tag{1}
\end{equation*}
$$

3. Unramified representations and unramified L-parameters

Let $\mathcal{W}_{F} \subset \Gamma_{u n}$ whose elements induce an integral power of the Frobenius automorphism $\sigma: x \mapsto$ x^{q} on the algebraic closure of the residue field. The valuation val: $\mathcal{W}_{F} \rightarrow \mathbb{Z}$ sends an element $\psi \in \mathcal{W}_{F}$ to the power of σ it induces, e.g $\operatorname{val}(\sigma)=1$. Define the "Weyl form" of the Langlands group to be ${ }_{w}^{L} \mathbf{G}:=\widehat{\mathbf{G}} \rtimes \mathcal{W}_{F} \subset{ }^{L} \mathbf{G}$. The isomorphism $\mathbb{Z} \rightarrow \mathcal{W}_{F}$ given by $1 \mapsto \sigma$ defines a semidirect product $\widehat{\mathbf{G}} \rtimes \mathbb{Z}$ and we get a homomorphism

$$
{ }_{w}^{L} \mathbf{G} \rightarrow \widehat{\mathbf{G}} \rtimes \mathbb{Z} .
$$

Definition 3.1. An unramified L-parameter is a homomorphism $\phi: \mathcal{W}_{F} \rightarrow{ }_{w}^{L} \mathbf{G}$ that verifies the following properties:
(i) The composition $\mathcal{W}_{F} \xrightarrow{\phi}{ }_{w}^{L} \mathbf{G} \longrightarrow \mathcal{W}_{F}$ is the identity.
(ii) For any $w \in \mathcal{W}_{F}, \phi(w)$ is semisimple.
(iii) The composition $\mathcal{W}_{F} \xrightarrow{\phi}{ }_{w}^{L} \mathbf{G} \longrightarrow \widehat{\mathbf{G}} \rtimes \mathbb{Z}$ factors through val.

Set $\Phi_{u n}(\mathbf{G})$ for the set of equivalence ${ }^{4}$ classes of unramified L-parameters.
The set of L-parameters is in bijection with the set of semisimple elements of the form $g \rtimes \sigma \in{ }^{L} \mathbf{G}$. Therefore, $\Phi_{u n}(\mathbf{G})$ identifies with the set of semisimple elements of $\widehat{\mathbf{G}}$ modulo σ-conjugation.

Definition 3.2. An unramified representation of $\mathbf{G}(F)$ is a homomorphism of groups $\pi: \mathbf{G}(F) \rightarrow$ $G L(V)$ where V is a \mathbb{C}-vector space verifying the following conditions:
(i) π is irreducible.
(ii) The stabilizer of any vector $v \in V$ is an open subgroups of $\mathbf{G}(F)$.
(iii) For any open subgroup $O \subset \mathbf{G}(F)$, the vector subspace V^{O} of O-fixed vectors is finite dimensional.
(iv) The subspace V^{K} is nonzero.

Set $\Pi_{u n}(\mathbf{G})$ for the set of equivalence ${ }^{5}$ classes of unramified representations of $\mathbf{G}(F)$.

[^3]
Seed Relations for Eichler-Shimura congruences and Euler systems

Proposition 3.3. There is a natural bijection

$$
\Phi_{u n}(\mathbf{G}) \simeq \widehat{\mathbf{S}}(\mathbb{C}) / W(\mathbf{G}, \mathbf{S}) \simeq \Pi_{u n}(\mathbf{G}) .
$$

Proof. In the proof of [BR94, Proposition 1.12.1], one shows first the above proposition for the torus \mathbf{T} :

$$
\Phi_{u n}(\mathbf{T}) \simeq \widehat{\mathbf{S}}(\mathbb{C}) \simeq \Pi_{u n}(\mathbf{T})
$$

then deduce it for \mathbf{G} using [Bor79, Proposition 6.7].
Combining Proposition 3.3 and (1) yields

$$
\begin{equation*}
\Phi_{u n}(\mathbf{G}) \simeq \operatorname{Spec}\left(\mathcal{H}_{K}(\mathbb{C})\right) . \tag{2}
\end{equation*}
$$

Remark 3.4. The above proposition gives an alternative characterization of the untwisted Satake homomorphism. Consider the following injective homormophism

$$
\begin{gathered}
\mathcal{H}_{K}(\mathbb{C}) \longrightarrow\left\{\Pi_{u n}(\mathbf{G}) \rightarrow \mathbb{C}\right\} \\
h_{g}=\mathbf{1}_{K g K} \longmapsto\left(\pi \mapsto \operatorname{Tr}\left(\left.\pi\left(h_{g}\right)\right|_{V^{K}}\right)\right),
\end{gathered}
$$

where, V is given a structure of a left $\mathcal{H}_{K}(\mathbb{C})$-module defined by $f \cdot v$ for $f \in \mathcal{H}_{K}(\mathbb{C})$ and $v \in V$ by the formula

$$
f \cdot v=\int_{G} f(g)(\pi(g) \cdot v) d \mu_{K}(g) .
$$

By Proposition 3.3 we get the following commutative diagram

4. The Hecke polynomial

Let $\mathfrak{c} \in \mathcal{M}(\bar{F})$ and $\mu_{\mathfrak{c}} \in X_{*}(\mathbf{T})$ be the unique $\mathbf{B}_{\bar{F}}$-dominant cocharacter of $\mathbf{T}_{\bar{F}}$. Both, \mathfrak{c} and $\mu_{\mathfrak{c}}$ have the same field of definition, a finite unramified extension $F(\mathfrak{c}) \subset F^{u n}$ of F. Set $d=[F(\mathfrak{c}): F]$ and let

$$
\operatorname{Norm}_{F(\mathfrak{c}) / F} \mathfrak{c}:=\left[\prod_{\tau \in \operatorname{Gal}(F(\mathfrak{c}) / F)} \tau\left(\mu_{\mathfrak{c}}\right)\right] \in \mathcal{M}(F)
$$

be the norm of \mathfrak{c}^{6}. We may assume that for some representative of the conjugacy class $N o r m_{F(\mathfrak{c}) / F} \mathfrak{c}$ takes values in the torus \mathbf{T} (and hence for all). The conjugacy class $\mathfrak{c} \in \mathcal{M}(F(\mathfrak{c}))$ determines a Weyl orbit of a character of $\widehat{\mathbf{T}}$, in which there is a unique $\widehat{\mu}_{\mathfrak{c}} \in X^{*}(\widehat{\mathbf{T}})$ that is dominant with respect to the Borel subgroup $\widehat{\mathbf{B}}$.

Let $\left(r_{\mathfrak{c}}, V\right)$ be a representation of ${ }^{L}\left(\mathbf{G}_{F(\mathfrak{c})}\right)$ (unique up to isomorphism) satisfying the conditions:

- The restriction of r_{c} to $\widehat{\mathbf{G}}$ is irreducible with highest weight $\widehat{\mu}_{\mathrm{c}}$.

[^4]
Reda Boumasmoud

- For any admissible invariant splitting of ${ }^{L}\left(\mathbf{G}_{F(\mathfrak{c})}\right)$ the subgroup $\Gamma_{u n}^{d}$ of ${ }^{L}\left(\mathbf{G}_{F(\mathfrak{c})}\right)$ acts trivially on the highest weight space of r_{c}.
Fix an invariant admissible splitting ${ }^{L}\left(\mathbf{G}_{F(\mathfrak{c})}\right)=\widehat{\mathbf{G}} \rtimes \Gamma_{u n}^{d}$.
Definition 4.1 The Hecke polynomial. For every $\widehat{g} \in \widehat{\mathbf{G}}$, consider the following polynomial:

$$
P_{\mathbf{G}, \mathfrak{c}}(X)=\operatorname{det}\left(X-q^{d\left\langle\mu_{\mathrm{c}}, \rho\right\rangle} r_{\mathfrak{c}}\left((\widehat{g} \rtimes \sigma)^{d}\right)\right) .
$$

By varying \widehat{g}, the coefficients of $P_{\mathbf{G}, \boldsymbol{c}}$ are viewed as elements of the algebra of regular functions of $\Phi_{u n}(\mathbf{G})$. Let $H_{\mathbf{G}, \mathfrak{c}} \in \mathcal{H}_{K}(\mathbb{C})[X]$ be the Hecke polynomial corresponding to $P_{\mathbf{G}, \mathfrak{c}}$ via (2) (compare with $[B R 94, \S 6])$.

5. Explicit twisted Satake transform

Let $\mu \in \operatorname{Norm}_{F(\mathfrak{c}) / F} \mathfrak{c}$ be the cocharacter of \mathbf{T} which is \mathbf{B}-dominant, i.e. ϖ^{μ} is antidominant. Let \mathbf{L} be the centralizer of μ in \mathbf{G}. Let \mathbf{P} be the largest parabolic subgroup of \mathbf{G} relative to which μ is dominant, \mathbf{L} is a Levi factor of \mathbf{P} and \mathbf{U}_{P}^{+}the unipotent radical of \mathbf{P}. By definition we have $\mathbf{T} \subset \mathbf{L}$ and $\mathbf{U}_{P}^{+} \subset \mathbf{U}^{+}$. Set $K_{\dagger}=\dagger \cap K$ for any $\dagger \in\left\{P, L, U_{P}^{+}\right\}$. Set $f_{[\mu]}=\mathbf{1}_{K \varpi^{\mu} K} \in \mathcal{H}_{K}(\mathbb{Z})$, $g_{[\mu]}=\mathbf{1}_{\varpi^{\mu} K_{L}} \in \mathcal{C}_{c}\left(L / / K_{L}, \mathbb{Z}\right)$ and $i_{\varpi^{\mu}}=\mathbf{1}_{I \varpi^{\mu} I} \in \mathcal{H}_{I}(\mathbb{Z})$. Let $p: \mathbf{G}_{s c} \rightarrow \mathbf{G}$ be the simply connected covering of the derived group of G and let $\mathbf{S}_{s c}$ be the unique maximal F-split torus of $\mathbf{G}_{s c}$ such that $p\left(\mathbf{S}_{s c}\right) \subset \mathbf{S}$. The map p defines a homomorphism from $X_{*}\left(\mathbf{S}_{s c}\right)$ to $X_{*}(\mathbf{S})$. We are interested in the set

$$
\Sigma_{F}(\mu)=\left\{\nu \in X_{*}(\mathbf{S}): \mu-\nu \in \operatorname{Im}\left(X_{*}\left(\mathbf{S}_{s c}\right)\right) \text { and } w \nu \preceq \mu \text { for all } w \in W(\mathbf{G}, \mathbf{S})\right\} .
$$

Remark 5.1. The above W-invariant sets of weights plays a prominent role in representation theory and they are called "saturated sets of weights". Moreover, we have (see [Kot84a, §2.3], [Hum72, 13.4 Exercise] and Bourbaki's [Bou68, Chapter VI, Exercises of §1 and §2]) that

$$
\Sigma_{F}(\mu)=\bigsqcup_{\lambda \in X_{*}(\mathbf{S}) \cap \bar{C}: \lambda \preceq \mu} W \lambda
$$

where \preceq denotes 7 the partial order on $X_{*}(\mathbf{S}) \cap \overline{\mathcal{C}}$ defined by

$$
\lambda \preceq \nu \Leftrightarrow \nu-\lambda=\sum n_{\alpha} \alpha^{\vee}, n_{\alpha} \in \mathbb{Z}_{\geqslant 0} .
$$

Moreover, when μ is minuscule then $\Sigma_{F}(\mu)=W(\mathbf{G}, \mathbf{S}) \mu$ [Bou21a, Remark 5.2.8].
We have the following explicit description of the twisted Satake homomorphism
Proposition 5.2. Write

$$
\dot{\mathcal{S}}_{T}^{G}\left(f_{[\mu]}\right)=\sum_{\nu \in \Sigma_{F}(\mu)} c(\nu) \cdot \mathbf{1}_{\varpi^{\nu} T_{1}} \in \mathcal{C}_{c}\left(T / / T_{1}, \mathbb{Z}\right),
$$

and the coefficients $\{c(\nu)\}$ are positive powers of q and verifies

$$
c(w \nu)=q^{\langle\delta, \nu-w(\nu)\rangle} c(\nu) \text { for all } w \in W(\mathbf{G}, \mathbf{S}), \text { with } c(\mu)=1 .
$$

Proof. This is a particular case of [Bou21a, Theorem 5.2.1 \& Theorem 5.3.1]. The twisted Satake isomorphism ensures that $\dot{\mathcal{S}}_{T}^{G}\left(f_{[\mu]}\right) \in \mathcal{C}_{c}\left(T / / T_{1}, \mathbb{Z}\right)^{\dot{W}}$ where \dot{W} denotes the Weyl group with its

[^5]
Seed Relations for Eichler-Shimura congruences and Euler systems

twisted dot-action (See [Bou21a, §3.16]). This shows that

$$
c(\nu) q^{\langle\delta, \nu\rangle}=c(w(\mu)) q^{\langle\delta, w(\nu)\rangle} \text { for all } w \in W(\mathbf{G}, \mathbf{S}) .
$$

The coefficient $c(\mu)=1$ is obtained by [Kot84a, Lemma 2.3.7 (b)] using [Bou21a, Remark 5.2.9].
The fact that $c(\nu)>0$ if and only $\nu \in \Sigma_{F}(\mu)$ is well known in this unramified case; it follows by [Kot84a, Lemma 2.3.7 (a)] for the "only if" and [Rap00] for the "if".

6. Seed relations and U-operators

Using the fixed épinglage, we can consider a $\Gamma_{u n}$-equivariant embedding ${ }^{L} \mathbf{T}=\widehat{\mathbf{T}} \rtimes \Gamma_{u n} \hookrightarrow{ }^{L} \mathbf{G}$. The composition

$$
{ }^{L}\left(\mathbf{T}_{F(\mathbf{c})}\right) \longleftrightarrow{ }^{L}\left(\mathbf{G}_{F(\mathfrak{c})}\right) \xrightarrow{r_{\mathbf{c}}} G L(V) \xrightarrow{P_{\mathbf{G}, \mathbf{c}}} \mathbb{C}[X],
$$

is independent of all fixed choices. The restriction of $r_{\boldsymbol{c}}$ to $\widehat{\mathbf{T}}$ yields a weight space decomposition

$$
V=\bigoplus_{\lambda \in \Sigma_{E}\left(\mu_{c}\right)} V_{\hat{\lambda}} .
$$

We have

$$
\mathcal{S}_{T}^{G}\left(P_{\mathbf{G}, \mathfrak{c}}\right)=\operatorname{det}\left(X-\left.q^{d\left\langle\mu_{\mathrm{c}}, \rho\right\rangle} r_{\mathrm{c}}\right|_{L\left(\mathbf{T}_{F(c)}\right)}\left((\widehat{t} \rtimes \sigma)^{d}\right)\right) \in \mathbb{C}\left[\Phi_{u n}(\mathbf{T})\right]^{W(\mathbf{G}, \mathbf{S})} .
$$

Define the twisted restriction of $r_{\mathfrak{c}}$ to be the morphism of schemes

$$
r_{T}:{ }^{L}\left(\mathbf{T}_{F(\mathfrak{c})}\right)=\widehat{\mathbf{T}} \rtimes \Gamma_{u n}^{d} \rightarrow G L(V)
$$

given on \mathbb{C}-points by

$$
\begin{equation*}
r_{T}\left(1 \rtimes \sigma^{d}\right)=r_{\mathrm{c}}\left(1 \rtimes \sigma^{d}\right) \text { and } r_{T}(\widehat{t} \rtimes 1) \cdot v_{\lambda}=q^{-\langle\rho, \lambda\rangle} \lambda(\widehat{t}) \cdot v_{\lambda} \tag{3}
\end{equation*}
$$

for $v_{\lambda} \in V_{\lambda}$ for all $\lambda \in \Sigma\left(\mu_{\mathrm{c}}\right)$. The homomorphism r_{T} is not a homomorphism of groups but maps conjugacy classes to conjugacy classes and it is defined to ensure, using [Bou21a, Remark 5.2.9] and (3), that

$$
\begin{aligned}
\dot{\mathcal{S}}_{T}^{G}\left(P_{\mathbf{G}, \mathfrak{c}}\right) & =\eta_{B} \circ \mathcal{S}_{T}^{G}\left(P_{\mathbf{G}, \mathfrak{c}}\right) \\
& =\operatorname{det}\left(X-q^{-d\left\langle\mu_{\mathfrak{c}}, \rho\right\rangle} r_{T}\left((\widehat{t} \rtimes \sigma)^{d}\right)\right) \in \mathbb{C}\left[\Phi_{u n}(\mathbf{T})\right] .
\end{aligned}
$$

REmARK 6.1. Note that our choice of the twisted representation r_{T} depends crucially on the normalization of the isomorphism $X_{*}(\mathbf{S}) \simeq \Lambda_{T}$. We have adopted the following isomorphism $\lambda \mapsto \varpi^{\lambda}$. Using [Bou21a, Remark 5.2.9] and $\delta_{B}\left(\varpi^{\lambda}\right)^{1 / 2}=q^{-\langle\lambda, \rho\rangle}$, we see that

As opposed to [Wed00, Proposition 2.7], we insist on the fact that we do not assume μ to be minuscule in the following proposition.
Proposition 6.2. (i) Let $\mathbf{S}^{F(\mathfrak{c})} \subset \mathbf{T}$ denotes the maximal split torus of $\mathbf{G}_{F(\mathfrak{c})}$ containing the image of $\mu_{\mathfrak{c}}$, let $\overline{\mathcal{C}}_{F(\mathfrak{c})} \subset \mathcal{B}\left(\mathbf{G}_{F(\mathfrak{c})}, F(\mathfrak{c})\right)_{\text {ext }}$ be the closed vectorial chamber corresponding to

Reda Boumasmoud

the Borel $\mathbf{B}_{F(\mathfrak{c})}$. We have

$$
\operatorname{deg}\left(H_{\mathbf{G}, \mathfrak{c}}\right) \geqslant \sum_{\lambda \in X_{*}\left(\mathbf{S}^{F(c)}\right) \pi \bar{c}_{F(\mathfrak{c})}: \lambda \preceq \mu_{c}} \#\left(W\left(\mathbf{G}, \mathbf{S}^{F(\mathfrak{c})}\right) \lambda\right)=\# \Sigma_{F(\mathfrak{c})}\left(\mu_{\mathfrak{c}}\right)
$$

(ii) The twisted restriction r_{T} of $r_{\mathbf{c}}$ to ${ }^{L}\left(\mathbf{T}_{F(\mathfrak{c})}\right)$ is isomorphic to a direct sum

$$
V=\bigoplus_{\Sigma_{F(c)}\left(\mu_{c}\right)} V_{\widehat{\lambda}}
$$

where, $V_{w(\hat{\mu})}$ is one-dimensional with generator $v_{\hat{\lambda}}$ for any $w \in W$, such that

$$
\begin{equation*}
r_{T}\left(\widehat{t} \rtimes \sigma^{d}\right) \cdot v_{\sigma^{d(r-1)}} w(\widehat{\mu})=q^{-\langle\rho, w(\mu)\rangle} w(\widehat{\mu})(\widehat{t}) \cdot v_{w(\widehat{\mu})} . \tag{4}
\end{equation*}
$$

Proof. We will just imitate the proof of [Wed00, (2) Proposition 2.7] but without requiring μ to be minuscule.
(i) Fix a Borel pair $(\widehat{\mathbf{T}}, \widehat{\mathbf{B}})$ of $\widehat{\mathbf{G}}$ and let $\widehat{\mu}_{\boldsymbol{c}}$ be the dominant character of $\widehat{\mathbf{T}}$ corresponding to the conjugacy classe \mathfrak{c}. By definition of the Hecke polynomial, its degree is the dimension of the representation r_{c} which is irreducible with highest weight $\widehat{\mu}_{c}$ as a representation of $\widehat{\mathbf{G}}$. By remark 5.1, the only weights of $r_{\mathbf{c}}$ are the elements $\bigsqcup_{\widehat{\lambda}} W(\widehat{\mathbf{G}}, \widehat{\mathbf{T}}) \widehat{\lambda}$ where the disjoint union is taken over dominant wights $\widehat{\lambda} \preceq \widehat{\mu}_{\mathrm{c}}$ (here \preceq is the usual partial order on dominant weights $\left.X^{*}(\widehat{\mathbf{T}})^{\text {dom }}\right)$. By definition of the dual group, we then have

$$
\begin{aligned}
\bigsqcup_{\widehat{\lambda} \in X^{*}(\widehat{\mathbf{T}})^{\operatorname{dom}}: \widehat{\lambda} \preceq \widehat{\mu}_{\mathfrak{c}}} W(\widehat{\mathbf{G}}, \widehat{\mathbf{T}}) \widehat{\lambda} & =\bigsqcup_{\lambda \in X_{*}\left(\mathbf{S}^{F(\mathfrak{c})}\right) \cap \overline{\mathcal{C}}_{F(\mathfrak{c})}: \lambda \preceq \mu_{\mathfrak{c}}} W\left(\mathbf{G}_{F(\mathfrak{c})}, \mathbf{S}^{F(\mathfrak{c})}\right) \lambda \\
& =\Sigma_{F(\mathfrak{c})}\left(\mu_{\mathfrak{c}}\right) .
\end{aligned}
$$

(ii) The twisted restriction r_{T} of r_{c} to ${ }^{L}\left(\mathbf{T}_{F(\mathfrak{c})}\right)$ is isomorphic to a direct sum

$$
V=\bigsqcup_{\widehat{\lambda} \in X^{*}(\widehat{\mathbf{T}})^{\text {dom }}: \widehat{\lambda} \preceq \widehat{\mu}_{\mathrm{c}}} V_{\widehat{\lambda}}
$$

and the highest weight space $V_{\widehat{\mu}_{c}}$ is one-dimensional ${ }^{8}$ with generator $v_{\widehat{\mu}_{c}}$. Accordingly, $V_{\widehat{\lambda}}$ is one-dimensional for any $\widehat{\lambda} \in W(\widehat{\mathbf{G}}, \widehat{\mathbf{T}}) \widehat{\mu}_{\mathfrak{c}}$. The conjugacy class \mathfrak{c} being defined over $F(\mathfrak{c})$, we see that $\left\langle\sigma^{n}\right\rangle$ stabilizes $W(\widehat{\mathbf{G}}, \widehat{\mathbf{T}}) \widehat{\mu}_{\mathrm{c}}$.
Choose for each classe $Z \in W(\widehat{\mathbf{G}}, \widehat{\mathbf{T}}) \widehat{\mu}_{\mathrm{c}} /\left\langle\sigma^{d}\right\rangle$ a representative $\widehat{\lambda}_{Z} \in Z$ and a vector $v_{\widehat{\lambda}_{Z}} \in V_{\widehat{\lambda}_{Z}}$. Define

$$
v_{\sigma^{r d}\left(\widehat{\lambda}_{Z}\right)}:=r_{\mathrm{c}}\left(1 \rtimes \sigma^{r d}\right) \cdot v_{\hat{\lambda}_{Z}}, \quad \text { for } 1 \leqslant r<r_{Z}:=\min \left\{s: \sigma^{s d} \widehat{\lambda}_{Z}=\hat{\lambda}_{Z}\right\}
$$

Therefore, taking $r=-1$ gives

$$
r_{T}\left(\hat{t} \rtimes \sigma^{d}\right) \cdot v_{\sigma^{d(r-1)}\left(\widehat{\lambda}_{Z}\right)}=r_{T}(\hat{t} \rtimes 1) \cdot v_{\hat{\lambda}_{Z}} \stackrel{(3)}{=} q^{-\langle\rho, \lambda\rangle} \widehat{\lambda}_{Z}(\widehat{t}) \cdot v_{\hat{\lambda}_{Z}} \cdot \square
$$

Lemma 6.3. We have $\left(\dot{\mathcal{S}}_{T}^{G} H_{\mathbf{G}, \mathfrak{c}}\right)(\mu)=0$ in $\mathcal{C}_{c}\left(T / / T_{1}, R\right)$.
Proof. The conjugacy classe $[\mu]$ (resp. \mathfrak{c}) gave rise to a dominant character $\widehat{\mu}$ (resp. $\widehat{\mu}_{\mathbf{c}}$) of $\widehat{\mathbf{T}}$ and

$$
\widehat{\mu}=\widehat{\mu}_{\mathfrak{c}} \sigma\left(\widehat{\mu}_{\mathfrak{c}}\right) \cdots \sigma^{d-1}\left(\widehat{\mu}_{\mathfrak{c}}\right) .
$$

[^6]
Seed Relations for Eichler-Shimura congruences and Euler systems

To prove the lemma, it suffices to show that

$$
\operatorname{det}\left(X-\left.q^{d\left\langle\mu_{\mathrm{c}}, \rho\right\rangle} r_{T}\right|_{\hat{\mu}_{\mathrm{c}}}\left((\sigma \ltimes \widehat{t})^{d}\right)\right) \in \mathbb{C}\left[\Phi_{u n}(\mathbf{T})\right][X]
$$

has $\widehat{\mu}(\hat{t})$ as a root for all $\widehat{t} \in \widehat{\mathbf{T}}$. Identify $\Phi_{u n}(\mathbf{T})$ with the set of σ-conjugacy classes $\{\hat{t}\}$ of elements $\widehat{t} \in \widehat{\mathbf{T}}(\mathbb{C})$. For any $v \in V_{\widehat{\mu}}$, we have

$$
\begin{aligned}
& q^{d\left\langle\mu_{\mathfrak{c}}, \rho\right\rangle} r_{T}\left((\sigma \ltimes \widehat{t})^{d}\right) \cdot v=q^{d\left\langle\mu_{\mathfrak{c}}, \rho\right\rangle} r_{T}\left(\sigma^{d} \ltimes\left(\widehat{t} \sigma(\widehat{t}) \cdots \sigma^{d-1}(\widehat{t})\right)\right) \cdot v \\
& \stackrel{\text { Prop. }}{=}{ }^{6.2} \widehat{\mu}_{\mathfrak{c}}\left(\widehat{t} \sigma(\widehat{t}) \cdots \sigma^{d-1}(\widehat{t})\right) \cdot v \\
&=\widehat{\mu}_{\mathfrak{c}}(\widehat{t}) \sigma\left(\widehat{\mu}_{\mathfrak{c}}\right)(\widehat{t}) \cdots \sigma^{d-1}\left(\widehat{\mu}_{\mathfrak{c}}\right)(\widehat{t}) \cdot v \\
&=\widehat{\mu}(\widehat{t}) \cdot v . \square
\end{aligned}
$$

We will show now the main theorem of the paper:
Theorem 6.4 Seed relation. The operator $u_{\varpi^{\mu}} \in \mathbb{U}$ is a right root of the Hecke polynomial $H_{\mathbf{G}, \mathfrak{c}}$ in the non-commutatif R-algebra $\operatorname{End}_{P}\left(\mathcal{C}_{c}(G / K, R)\right)$.

Proof. Under the identifications $\Lambda_{T} \simeq X_{*}(\mathbf{T})_{F} \simeq X^{*}(\widehat{\mathbf{T}})_{F}$ the element $\varpi^{\mu} T_{1} \in \Lambda_{T}^{-}$corresponds to the function $t \mapsto \widehat{\mu}(t)$. Recall that by [Bou21d, Lemma 2.6.4] $u_{\varpi^{\mu}} \in \operatorname{End}_{P} \mathcal{C}_{c}(G / / K, \mathbb{Z})$ and the coefficients of $H_{\mathbf{G}, \mathrm{c}}$ are in $\mathcal{H}_{K}(R) \simeq E n d_{G} \mathcal{C}_{c}(G / / K, R)$ [Wed00, 2.8], thus

$$
H_{\mathbf{G}, \mathfrak{c}}\left(u_{\varpi^{\mu}}\right) \in \operatorname{End}_{P} \mathcal{C}_{c}(G / / K, R) .
$$

Thanks to the compatibility of the Satake and Bernstein twisted isomorphisms [Bou21a, Theorem 6.5.1], we see that $\dot{\Theta}_{\text {Bern }} \circ \dot{\mathcal{S}}_{T}^{G}\left(H_{\mathbf{G}, \mathfrak{c}}\right) \in Z\left(\mathcal{H}_{I}(R)\right)[X]$. Write $H_{\mathbf{G}, \mathfrak{c}}=\sum_{k=1}^{r} h_{k} X^{k}$ and $\bar{h}_{k}=$ $\dot{\Theta}_{\text {Bern }} \circ \dot{\mathcal{S}}_{T}^{G}\left(h_{k}\right) \in Z\left(\mathcal{H}_{I}(R)\right)$. So $\bar{h}_{k} *_{I} \mathbf{1}_{K}=\mathbf{1}_{K} *_{I} \bar{h}_{k}=h_{K}$. We then have for any $p \in P$

$$
\begin{aligned}
& \mathbf{1}_{p K} \bullet H_{\mathbf{G}, \mathfrak{c}}\left(u_{\varpi^{\mu}}\right)=\sum_{k=1}^{r}\left(\mathbf{1}_{p K} \bullet u_{\varpi}{ }^{\mu}\right) *_{K} h_{k} \\
&=\sum_{k=1}^{r}\left(\mathbf{1}_{p I} *_{I} i_{\varpi \mu}^{k}\right) *_{I} \mathbf{1}_{K} *_{K} h_{k} \\
&=\sum_{k=1}^{r}\left(\mathbf{1}_{p I} *_{I} i_{\varpi^{\mu}}^{k}\right) *_{I}\left(\frac{1}{[K: I]} \mathbf{1}_{K} *_{I} \mathbf{1}_{K} *_{I} \bar{h}_{k}\right) \\
&=\sum_{k=1}^{r}\left(\mathbf{1}_{p I} *_{I} i_{\varpi_{\mu}}^{k}\right) *_{I} \mathbf{1}_{K} *_{I} \bar{h}_{k} \\
&=\mathbf{1}_{p I} *_{I}\left(\sum_{k=1}^{r} i_{\varpi \mu}^{k} *_{I} \bar{h}_{k}\right) *_{I} \mathbf{1}_{K} \\
&=\mathbf{1}_{p I} *_{I}\left(\sum_{k=1}^{r} \bar{h}_{k} *_{I} i_{\varpi}^{k}\right) *_{I} \mathbf{1}_{K} \\
&=\mathbf{1}_{p I} *_{I}\left(\left(\dot{\Theta}_{\mathrm{Bern}} \circ \dot{\mathcal{S}}_{T}^{G} H_{\mathbf{G}, \mathfrak{c}}\right)\left(i_{\varpi}^{\mu}\right)\right) *_{I} \mathbf{1}_{K} \\
&=\mathbf{1}_{p I} *_{I} \dot{\Theta}_{\mathrm{Bern}}\left(\left(\dot{\mathcal{S}}_{T}^{G} H_{\mathbf{G}, \mathfrak{c}}\right)\left(\varpi^{\mu} T_{1}\right)\right) *_{I} \mathbf{1}_{K} \\
& \text { Lemma } 6.3 \\
&=
\end{aligned}
$$

We have shown $H_{\mathbf{G}, \mathfrak{c}}\left(u_{\varpi^{\mu}}\right)=\sum_{k=1}^{r} h_{k} \circ u_{\varpi^{\mu}}^{k}=0 \in \operatorname{End}_{P}\left(\mathcal{C}_{c}(G / K, R)\right)$.

Reda Boumasmoud

Remark 6.5. If $\mu_{\mathfrak{c}}$ is minuscule, then $\Sigma_{F}\left(\mu_{\mathfrak{c}}\right)=W\left(\mathbf{G}_{\bar{F}}, \mathbf{T}\right) \mu_{\mathfrak{c}}$ and accordingly the degree of the Hecke polynomial is

$$
\operatorname{deg}\left(H_{\mathbf{G}, \mathfrak{c}}\right)=\left|W\left(\mathbf{G}_{\bar{F}}, \mathbf{T}\right) \mu_{\mathfrak{c}}\right|
$$

In particular, $\operatorname{deg}\left(H_{\mathbf{G}, \boldsymbol{c}}\right) \geqslant \operatorname{deg}\left(P_{\mu}\right)=\left|W / W_{\mu}\right|=|W(\mathbf{G}, \mathbf{S}) \mu|$, where P_{μ} is the minimal polynomial of $u_{\varpi^{\mu}}$ in $Z\left(\mathcal{H}_{I}(R)\right)$ (see proof of [Bou21d, Theorem 2.8.1]). Therefore, if \mathbf{G} is a split group, μ_{c} minuscule and $E=F$, then

$$
H_{G,[\mu]}=P_{\mu} *_{I} \mathbf{1}_{K} .
$$

7. Bültel's annihilation relation

In this last section we will show how Theorem 6.4 lifts (generalizes) a previously known result due to Bültel [Bül97, 1.2.11].

Let $\dot{\mathcal{S}}_{P}: \mathcal{C}_{c}\left(P / K_{P}, \mathbb{Q}\right) \rightarrow \mathcal{C}_{c}\left(L / K_{L}, \mathbb{Q}\right)$ be the canonical homomorphism given by

$$
f \mapsto\left(m \mapsto \int_{U_{P}^{+}} f(n m) d \mu_{U_{P}^{+}}(n)\right),
$$

where $d \mu_{U_{P}^{+}}$is the left-invariant Haar measure giving $K_{U_{P}^{+}}$volume 1. Both \mathbb{Q}-modules $\mathcal{C}_{c}(P /$ K_{P}, \mathbb{Q}) and $\mathcal{C}_{c}\left(L / K_{L}, \mathbb{Q}\right)$ are actually \mathbb{Q}-algebras (by [Bou21a, Lemma 3.11.2]) and the transform $\dot{\mathcal{S}}_{P}$ is an algebra homomorphism. Indeed, let $f, g \in \mathcal{C}_{c}\left(P / K_{P}, \mathbb{Q}\right)$ then

$$
\begin{aligned}
\dot{\mathcal{S}}_{P}\left(f *_{K_{P}} g\right)(p) & =\int_{U_{P}^{+}}\left(\int_{P} f(a) g\left(a^{-1} u p\right) d \mu_{P}(a)\right) d \mu_{U_{P}^{+}}(u) \\
& =\int_{U_{P}^{+}} \int_{L} \int_{U_{P}^{+}} f(n m) g\left(m^{-1} n^{-1} u p\right) d \mu_{U_{P}^{+}}(n) d \mu_{L}(m) d \mu_{U_{P}^{+}}(u) \\
& =\int_{U_{P}^{+}}\left(\int_{L} f(n m) d \mu_{U_{P}^{+}}(n)\right)\left(\int_{U_{P}^{+}} g\left(m^{-1} p u\right) d \mu_{U_{P}^{+}}(u)\right) d \mu_{L}(m) \\
& =\dot{\mathcal{S}}_{P}(f) *_{K_{P}} \dot{\mathcal{S}}_{P}(g)(p)
\end{aligned}
$$

where, $d \mu_{P}$ denotes the left invariant Haar measure giving K_{P} measure 1 .
We also consider the map $\left.\right|_{P}$ sending any function on G to its restriction to P. Using the Iwasawa decomposition $G=P K$ ([Bou21a, Proposition 2.2.1]) one shows that this is actually an algebra homomorphism

$$
\left.\right|_{P}: \mathcal{H}_{K}(R) \longrightarrow \mathcal{C}_{c}\left(P / / K_{P}, R\right),
$$

and a $\left.\right|_{P \text {-linear module homomorphism }}$

$$
\left.\right|_{P}: \mathcal{C}_{c}(G / K, R) \longrightarrow \mathcal{C}_{c}\left(P / K_{P}, R\right) .
$$

Lemma 7.1. Let $p \in P$ and $m \in L$, then:

$$
\left.\mathbf{1}_{p K}\right|_{P}=\mathbf{1}_{p K_{P}} \text { and } \dot{\mathcal{S}}_{L}^{P}\left(\mathbf{1}_{m K_{P}}\right)=\left|m K_{U_{P}^{+}} m^{-1}\right|_{U_{P}^{+}} \mathbf{1}_{m K_{L}}
$$

Proof. The first equality is a direct consequence of the Iwasawa decomposition. For the second it is deduced from the fact that $K_{P}=K_{L} \cdot K_{U_{P}^{+}}$given in [Bou21a, Proposition 2.2.1]:

$$
\dot{\mathcal{S}}_{L}^{P}\left(\mathbf{1}_{m K_{P}}\right)(a)=\int_{U_{P}^{+}} \mathbf{1}_{m K_{P}}(u a) d \mu_{U_{P}^{+}}(u)
$$

Seed Relations for Eichler-Shimura congruences and Euler systems

The integrand is nonzero if and only if $u a \in m K_{P}=m K_{L} \cdot K_{U_{P}^{+}}$, but since $L \cap U_{P}^{+}=\{1\}$, we have

$$
u \in a K_{U_{P}^{+}} a^{-1} \text { and } a \in m K_{L},
$$

which is equivalent to $u \in m K_{U_{P}^{+}} m^{-1}$ and $w \in m K_{L}$. Therefore,

$$
\dot{\mathcal{S}}_{L}^{P}\left(\mathbf{1}_{m K_{P}}\right)=\left|m K_{U_{P}^{+}} m^{-1}\right|_{U_{P}^{+}} \mathbf{1}_{m K_{L}} . \square
$$

Observe that if $m K_{U_{P}^{+}} m^{-1} \subset K_{U_{P}^{+}}$then

$$
\left|m K_{U_{P}^{+}} m^{-1}\right|_{U_{P}^{+}}=\frac{1}{\left[K_{U_{P}^{+}}: m K_{U_{P}^{+}} m^{-1}\right]}=\frac{1}{\left[K_{P}: m K_{P} m^{-1}\right]} .
$$

Lemma 7.2. We have a following commutative diagram of R-algebras

where, W_{L} denotes the relative Weyl group of L (which is equal to the subgroup W_{μ} of elements in W fixing μ). The lowest horizontal arrow is the inclusion of W-invariants into W_{L}-invariants. Proof. By definition of the parabolic P, multiplication in G gives a bijection

$$
\begin{equation*}
\left(U^{+} \cap L\right) \cdot U_{P}^{+} \xrightarrow{\sim} U^{+} . \tag{5}
\end{equation*}
$$

For any $m \in L$ and $h \in \mathcal{H}_{K}(R)$

$$
\begin{aligned}
\dot{\mathcal{S}}_{T}^{G}(h)(m) & =\int_{U^{+}} h(u m) d \mu_{U^{+}}(u) \\
& =\int_{U_{P}^{+}} \int_{U^{+} \cap L} h\left(u_{1} u_{2} m\right) d \mu_{U_{P}^{+}}\left(u_{1}\right) d \mu_{U^{+} \cap L}\left(u_{2}\right) \\
& =\int_{U^{+} \cap L}\left(\int_{U_{P}^{+}} h\left(u_{1} u_{2} m\right) d \mu_{U_{P}^{+}}\left(u_{1}\right)\right) d \mu_{U^{+} \cap L}\left(u_{2}\right) \\
& =\int_{U^{+} \cap L} \dot{\mathcal{S}}_{L}^{G}(h)\left(u_{2} m\right) d \mu_{U^{+} \cap L}\left(u_{2}\right) \\
& =\dot{\mathcal{S}}_{T}^{L} \circ \dot{\mathcal{S}}_{L}^{G}(h)(m) .
\end{aligned}
$$

Therefore, $\dot{\mathcal{S}}_{T}^{G}=\dot{\mathcal{S}}_{T}^{L} \circ \dot{\mathcal{S}}_{L}^{G}$ which confirms the claimed commutativity of the above diagram. Finally, the vertical maps are isomorphisms by [Bou21a, Theorem 5.2.1].

Let us reformulate the above twisted Satake homomorphism $\dot{\mathcal{S}}_{L}^{G}$ as a homomorphism of endomorphism rings. We have a commutative diagram:

Let us first say few words about the homomorphisms (1) and (2):

Reda Boumasmoud

- We have used the Iwasawa decomposition $G=P K$ to identify $G / K \simeq P / K_{P}$ for the middle vertical arrow, accordinly the homomorphism $\left.\right|_{P}$ induces the canonical injection (1):

$$
\operatorname{End}_{G} \mathcal{C}_{c}(G / K, R) \longleftrightarrow \operatorname{End}_{P} \mathcal{C}_{c}(G / K, R)
$$

- We have a homomorphism of rings

$$
\begin{array}{r}
\operatorname{End}_{P} \mathcal{C}_{c}(G / K, R) \longrightarrow \operatorname{End}_{P} \mathcal{C}_{c}\left(U_{P}^{+} \backslash G / K, R\right) \\
f \longmapsto\left(U_{P}^{+} g K \mapsto \Pi(f(g K))\right)
\end{array}
$$

where Π is the natural obvious map $R[G / K] \rightarrow R\left[U_{P}^{+} \backslash G / K\right]$. But since $P=L U_{P}^{+}$, we actually have $\operatorname{End}_{P} \mathcal{C}_{c}\left(U_{P}^{+} \backslash G / K, R\right)=\operatorname{End}_{L} \mathcal{C}_{c}\left(U_{P}^{+} \backslash G / K, R\right)$.
Using the Iwasawa decomposition again $G=U_{P}^{+} L K$, we get a bijection

$$
U_{P}^{+} \backslash G / K \simeq L / K_{L} .
$$

Thus, the homomorphism (2) is the composition

$$
\operatorname{End}_{P} \mathcal{C}_{c}(G / K, R) \longrightarrow \operatorname{End}_{L} \mathcal{C}_{c}\left(U_{P}^{+} \backslash G / K, R\right) \xrightarrow{\simeq} \operatorname{End}_{L} \mathcal{C}_{c}\left(L / K_{L}, R\right)
$$

- The homomorphism (3) is the twist by the modulus function δ.

Lemma 7.3. The operator $u_{\varpi^{\mu}}$ lives in $\operatorname{End}_{P} \mathcal{C}_{c}(G / K, R)$ and its image by the composition (3) $\circ(2)$ is precisely $g_{[\mu]}$.

Proof. Let us first compute the image of the operator $u_{\varpi^{\mu}}$ by the map (2). We have for all $a \in L$ (see [Bou21d, Lemma 2.6.4])

$$
\begin{aligned}
u_{\varpi^{\mu}}\left(\mathbf{1}_{U_{P}^{+} a K}\right) & =\sum_{p^{\prime} \in\left[U_{P}^{+} \cap I^{+} / U_{P}^{+} \cap \varpi^{\mu} I^{+} \varpi^{-\mu}\right]} \\
& \mathbf{1}_{U_{P}^{+} a p^{\prime} \varpi^{\mu} K} \\
& =\#\left(U_{P}^{+} \cap I^{+} / U_{P}^{+} \cap \varpi^{\mu} I^{+} \varpi^{-\mu}\right) \mathbf{1}_{U_{P}^{+} a \varpi^{\mu} K}
\end{aligned}
$$

$$
=\#\left(I^{+} / \varpi^{\mu} I^{+} \varpi^{-\mu}\right) \mathbf{1}_{U_{P}^{+} a \varpi^{\mu} K} \quad[\text { Bou21d, Lemma 2.3.2] }
$$

Hence, the image of $u_{\varpi^{\mu}} \in \operatorname{End}_{P} \mathcal{C}_{c}(G / K, R)$ by (2) is

$$
\#\left(I^{+} / \varpi^{\mu} I^{+} \varpi^{-\mu}\right) g_{[\mu]}=\delta_{B}\left(\varpi^{-\mu}\right) g_{[\mu]}=q^{2\langle\mu, \rho\rangle} g_{[\mu]} .
$$

Finally, (3) shows that the image of $u_{\varpi^{\mu}}$ by the composition (3) $\circ(2)$ is $g_{[\mu]} \in E n d_{L} \mathcal{C}_{c}\left(L / K_{L}, R\right)$.
Bultel's annihilation result we have mentioned earlier is:
Corollary 7.4 Bultel's annihilation. We have

$$
\dot{\mathcal{S}}_{L}^{G}\left(H_{\mathbf{G}, \mathfrak{c}}\left(g_{[\mu]}\right)\right)=0 \in \mathcal{C}_{c}\left(L / / K_{L}, R\right) .
$$

Bultel's result as stated in [Wed00, §2.9] requires the conjugacy class \mathfrak{c} to be minuscule. We will derive this corollary from Theorem 6.4, showing that the assumption "minuscule" is superfluous.

Proof. By definition of the "excursion" pairing [Bou21d, §2.6] and the proof of Lemma 7.3, we

Seed Relations for Eichler-Shimura congruences and Euler systems

see that for all $p \in P$:

$$
\begin{aligned}
& \left.0 \stackrel{\text { Theorem } 6.4}{=}\left(H_{\mathbf{G}, \mathfrak{c}}\left(u_{\varpi^{\mu}}\right) \bullet \mathbf{1}_{p K}\right)\right|_{P} \\
& \quad=\left.\mathbf{1}_{p K_{P}} *_{K_{P}} \mathbf{1}_{K_{P} \varpi^{\mu} K_{P}} *_{K_{P}}\left(H_{\mathbf{G}, \mathfrak{c}}\right)\right|_{P} .
\end{aligned}
$$

This shows that

$$
\left.\left(H_{\mathbf{G}, \mathfrak{c}}\right)\right|_{P}\left(\mathbf{1}_{K_{P} \varpi^{\mu} K_{P}}\right)=0,
$$

and consequently we conclude

$$
\dot{\mathcal{S}}_{G}^{L}\left(H_{\mathbf{G}, \mathfrak{c}}\right)\left(g_{[\mu]}\right)=\dot{\mathcal{S}}_{P}\left(\left.\left(H_{\mathbf{G}, \mathfrak{c}}\right)\right|_{P}\left(\mathbf{1}_{K_{P} \varpi^{\mu} K_{P}}\right)\right)=0 .
$$

References

BBJ18 R Boumasmoud, E Brooks, and D Jetchev, Vertical Distribution Relations for Special Cycles on Unitary Shimura Varieties, International Mathematics Research Notices 2020 (2018), 39023926.

Bor79 A Borel, Automorphic L-functions, Automorphic forms and Automorphic representations Part II (Providence, RI), Proceedings of Symposia in Pure Mathematics, vol. 33, Amer. Math. Soc., 1979, pp. 27-61.
Bou68 N Bourbaki, Groupes et Algèbres de Lie, vol. IV, V and VI, Hermann, Paris, 1968.
Bou21a R Boumasmoud, A tale of parahoric-Hecke algebras, Bernstein and Satake homomorphisms, arXiv e-prints (2021), 1-58.
Bou21b \qquad , General Horizontal Norm Compatible Systems, arXiv e-prints (2021), 1-53.
Bou21c , Generalized Eichler-Shimura relations and Blasius-Rogawski conjecture, in preparation (2021).

Bou21d __ The ring of \mathbb{U}-operators: Definitions and Integrality, arXiv e-prints (2021), 1-18.
BR94 D Blasius and J D Rogawski, Zeta functions of Shimura varieties, Motives (Providence, RI), vol. 55, Proceedings of Symposia in Pure Mathematics, no. II, Amer. Math. Soc., 1994, pp. 525571.

Bül97 O Bültel, On the mod-p reduction of ordinary CM-points, Ph.D. thesis, Oxford, 1997.
BW06 O Bültel and T Wedhorn, Congruence relations for Shimura varieties associated to some unitary groups, Journal of the Institute of Mathematics of Jussieu. JIMJ. Journal de l'Institut de Mathématiques de Jussieu 5 (2006), no. 2, 229-261.
FC90 G Faltings and C L Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, Springer-Verlag, Berlin, 1990.
GD70 A Grothendieck and M Demazure, Schémas en groupes. III: Structure des schémas en groupes réductifs, Lecture Notes in Mathematics, vol. 153, Springer-Verlag, 1970.
Hum72 J E Humphreys, Introduction to lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, 1972.
Kis09 M Kisin, Integral canonical models of Shimura varieties, Journal de Théorie des Nombres de Bordeaux 21 (2009), no. 2, 301-312.
Kis10 , , Integral models for Shimura varieties of abelian type, Journal of the American Mathematical Society 23 (2010), no. 4, 967-1012.
Kos13 J S Koskivirta, Congruence relations for Shimura varieties associated to $G U(n-1,1)$, preprint (2013).

Kot84a R E Kottwitz, Shimura Varieties and Twisted Orbital Integrals, Mathematische Annalen 269 (1984), 287-300.

Seed Relations for Eichler-Shimura congruences and Euler systems

Kot84b _ Stable trace formula: Cuspidal tempered terms, Duke Math. J. 51 (1984), no. 3, 611-650.
Li18 H Li, Notes on Congruence relations of some GSpin Shimura varieties, ArXiv e-prints (2018).
Mil17 J S Milne, Introduction to Shimura varieties, www.jmilne.org (2017), 1-172.
Moo04 B Moonen, Serre-Tate theory for moduli spaces of PEL type, Annales Scientifiques de l'École Normale Supérieure. Quatrième Série 37 (2004), no. 2, 223-269.
Rap00 M Rapoport, A positivity property of the Satake homomorphism, Manuscripta Math. 101 (2000), 153-166.
Wed00 T Wedhorn, Congruence relations on some Shimura varieties, Journal für die Reine und Angewandte Mathematik 524 (2000), 43-71.

Reda Boumasmoud reda.boumasmoud@imj-prg.fr \& reda.boumasmoud@gmail.com Institut de Mathematiques de Jussieu-Paris Rive Gauche. 75005 Paris, France

[^0]: 2020 Mathematics Subject Classification 11E95, 11G18, 20E42, 20G25 and 20C08 (primary).
 The author was supported by the Swiss National Science Foundation grant \#PP00P2-144658 and \#P2ELP2191672.

[^1]: ${ }^{1}$ Note that in this unramified case, \mathbf{T} splits over the completion of $F^{u n}$ denoted previously by L. Thus, the Kottwitz homomorphism takes the simpler form $\kappa_{\mathbf{T}}: \mathbf{T}(L) \rightarrow X_{*}(\mathbf{T})$.
 ${ }^{2}$ Given B, the chamber \mathcal{C}^{+}is the unique vectorial chamber with apex a_{\circ} for which $T_{1} U^{+}$is the union of the fixators of all quartiers $a+\mathcal{C}^{+}$with $a \in \mathcal{A}$.

[^2]: ${ }^{3}$ Here, for each simple root α of $\widehat{\mathbf{T}}, e_{\alpha}$ is a nonzero element of the root vector space $\operatorname{Lie}(\widehat{\mathbf{G}})_{\alpha}$.

[^3]: ${ }^{4}$ Two L-parameters are equivalent if they are $\widehat{\mathbf{G}}(\mathbb{C})$-conjugate.
 ${ }^{5}$ Two representations $\left(\pi_{1}, V_{1}\right)$ and $\left(\pi_{2}, V_{2}\right)$ are equivalent if there exists an isomorphism $V_{1} \rightarrow V_{2}$ sending π_{1} to π_{2}.

[^4]: ${ }^{6}$ It is straightforward that the conjugacy class $\operatorname{Norm} m_{F(\mathfrak{c}) / F} \mathfrak{c}$ does not depend on the choice of the representative μ_{c}.

[^5]: ${ }^{7}$ Compare with [Bou21a, Definition 5.2.4]

[^6]: ${ }^{8}$ The weight spaces in the weyl orbit of the highest weight are one dimensional, but outside this distinguished weyl orbit, there are weight spaces which are not 1 dimensional.

